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T Notice

This Required Model Information (RMI) document adheres to the stipulations outlined in the
California Department of Insurance’s (CDI) Pre-application Required Information Determination
(PRID) process, which was established in January 2025 under the Catastrophe Modeling in
Ratemaking regulation passed in December 2024. This document is intended to support users
of Verisk Wildfire Model for the United States, which was reviewed as part of PRID-2025-00001.

Should you have any inquiries regarding the content of this document, please contact the Verisk
Extreme Event Solutions Regulatory and Rating Agency Client Services team.

© 2025 AIR Worldwide Corporation. All rights reserved. This document is made available
solely for public inspection pursuant to California Insurance Code § 1861.07 and remains
the proprietary property of AIR Worldwide Corporation; copying, reuse, or redistribution is not
authorized without prior written consent.
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2 Model Highlights

2.1 Wildfire Catastrophe Model Identification

Name of Wildfire Model:

Verisk Wildfire Model for the United States

Wildfire Model Version:

v4.0.0

Available Software Platforms: Touchstone® 2024 and 20256
Name of Modeling Organization: Verisk
Street Address: Lafayette City Center, 2 Avenue de Lafayette,

2nd Floor

City, State, ZIP Code:

Boston, MA 02111

Phone Number.

(617) 267-6645

2.7  Model Facts

Teble 1 provides a high-level overview of the Verisk Wildfire Model for the United States.

Table 1. Model Facts

Modeled Countries

United States

Model Domain

Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico,
Oklahoma, Oregon, Texas, Utah, Washington, and Wyoming

Modeled Perils

wildfires (i.e., outside burn scars)

Wildfire, including smoke damage in unburned locations in and around

Primary Risk
Characteristics

Location, Year Built, Occupancy Type, Construction Type, Number of
Stories

Secondary Risk
Characteristics

Defensible space, Building shape, Roof geometry, Roof covering,
Roof detail: roof overhang, Roof detail: fire rating for roof covering,
Roof detail: roof vent size, Roof detall: roof vents, Roof attached

for wall siding, Surrounding detail: exterior fuel storage, Connection
detail: gutter, Connection detail: fences within 5 feet, Firewise USA™
community

structure: dormer, Roof detail: soffits, Wall siding, Wall detail: fire rating

Model Resolution

V= Verisk:
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Wildfire intensity (flame length) is calculated at 90-m resolution

Smoke Potential Index (SPI) is calculated at 1-km resolution
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Model Highlights

Modeled Parameters

Historical Event Set

Total annual area burned (burn scar) by ecoregion (acres)
Ignition location of each fire (longitude, latitude)

Day of year of ignition of each fire

Target burn scar size of each fire (acres)

Smoke damage in unburned areas

Insured and uninsured losses from fire and smoke

31 major loss-causing historical events: Oakland Hills, Laguna Canyon,
Old Topanga, Cerro Grande, Rodeo-Chediski, Cedar, Old, Witch,
Fourmile Canyon, Bastrop County Complex, Waldo Canyon, Black
Forest, Valley, Butte, Tubbs, Atlas, Nuns, Mendocino Lake, Thomas,
Camp, Woosley, CZU Lightning Complex, Beachie Creek, LNU Lightning
Complex, Holiday Farm, Babb, Almeda Drive, Glass, East Troublesome,
Marshall, Hermits Peak

Stochastic Catalogs

Lines of Business

10,000-year catalog
50,000-year catalog
100,000-year catalog

Residential (Building, Contents, Time)
Commercial/Industrial (Building, Contents, Time)
Mobile home (Building, Contents, Time)
Automobile

Industrial

V= Verisk:
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3.1

Model Inputs

Raw Data Inputs

Below is a list of the data inputs used in the construction of the Verisk Wildfire Model for the

United States. This list indicates the sources of these data and in the locations where they are

used. Data are sourced from a variety of public and private partners and evaluated for their
spatial and temporal extents, along with data fidelity and reliability. Within each component of the

model, multiple data sources may be used to inform the construction of different variables and

in the validation of the model construction. Verisk uses the most up to date information wherever
possible at the time of model construction.

California Department of Forestry and Fire Protection (CAL FIRE)

Redbooks

Description

CAL FIRE Redbooks provides detailed information about wildfire by
jurisdiction such as causes of fires, and estimated financial loss by year
CAL FIRE also provides up-to-date statistics on CA wildfires and CAL FIRE
activity, combining state and federal data to track the number of fires and
acres burned in California. (source: CAL FIRE Statistics)

Temporal Extent 1991-2022

State Specific Xl Yes O No
Data Type Xl Spatial XI Temporal

Use in Verisk Burned Area for Wildland Landscapes, Historical Wildfires, Historical Burn
Modeling Scar Area

Framework

Claims Data

Description Verisk clients partner with the research teams and offer their claims data for

development and validation purposes. The extent and granularity of these
vary. Claims data are subject to non-disclosure agreements and cannot be
shared with outside parties

Temporal Extent

through 2021

State Specific

X Yes O No

Data Type

V= Verisk:
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Model Inputs

Use in Verisk
Modeling
Framework

Model Validation, Estimating Burn Scars of Historical Wildfire Events |
Comparison of Modeled Losses to the Target Losses, Comparison of

Modeled [Losses to the Target Losses, Loss Comparison by Lines of

Business (LOB), Loss Comparison by Coverage, Loss Validation by Company,
Policy Conditions

Climatic Research Unit Timeseries (CRU TS 4.06)

Description

Gridded weather data variables including cloud cover, diurnal temperature
range, frost day frequency, potential evapotranspiration, precipitation,
relative humidity, sunshine duration, number of stations contributing to
each interpolation, monthly average daily mean, minimum and maximum
temperatures, daily average vapor pressure (humidity) and vapor pressure
deficit hPa (=mbar). (source: CRU General Information)

Temporal Extent 1901-2022

State Specific X Yes O No
Data Type Xl Spatial X1 Temporal

Use in Verisk Event Generation Overview, Burned Area for Wildland Landscapes, Saturation
Modeling Vapor Pressure (SVP), Vapor Pressure Deficit (VPD), Seasonal Weather
Framework Variables

Ecoregions

Description Environmental Protection Agency (EPA) Level Il Ecoregions are part of

a hierarchical framework developed by the United States EPA to classify
the ecological regions of the U.S. These regions are delineated based

on ecological patterns and are used for environmental management,
research, and assessment. The framework consists of four levels, with
Level Il providing a detailed classification that groups areas with similar
ecosystems, including climate, vegetation, soll, water, and wildlife. (source:
U.S. Environmental Protection Agency, Level Ill Ecoregions)

Temporal Extent April 2013
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Burned Area for Wildland L andscapes, Historical Burn Scar Area, Historical
Modeling Trends, Estimating Burn Scars of Historical Wildfire Events , Verisk Drought
Framework Index, Building Wildfire-Weather Models for Each Ecoregion, Comparisons

of Historical Burn Scar Areas with Wildfire-Weather Models, Recasts of
Historical Burn Scar Areas , Generating Stochastic Annual Burn Scar Area,

Ignition Day Probability , Accounting for Climate Change Overview

V= Verisk:
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Model Inputs

ESA WorldCover
Description ESA WorldCover provides high resolution land use/land cover data. (source:
ESA WorldCover)
Temporal Extent 2020 and 2021

State Specific X Yes O No
Data Type Xl Spatial O Temporal

Use in Verisk Spread Model Parameters, Surface Fuel, Surface Fuel: Fire Behavior Fuel
Modeling Models

Framework

Fire Occurrence Database (FOD)

Description A spatial database of wildfires that occurred in the United States from
1992 to 2020. It is the fifth update of a publication originally generated to
support the national Fire Program Analysis (FPA) system. The wildfire records
were acquired from the reporting systems of federal, state, and local fire
organizations. (source: United States Department of Agriculture Forest
Service)

Temporal Extent 1992-2020'
State Specific X Yes O No
Data Type Xl Spatial X1 Temporal
Use in Verisk Historical Burn Scar Area, Event Generation Overview, Building Wildfire-
Modeling Weather Models for Each Ecoregion, Ignition Day Probability , Ignition Date
Framework and Location, Estimating Burn Scars of Historical Wildfire Events

Geospatial Multi-Agency Coordination (GeoMAC)

Description GeoMAC was the public face of all wildland fire perimeters. That site was
shut down on April 30, 2020 and responsibility for wildfire information was
transferred to the National Interagency Fire Center (NIFC). (source: USGS)

Temporal Extent 2000-2020
State Specific X Yes O No
Data Type Xl Spatial X1 Temporal
Use in Verisk Historical Burn Scar Area, Historical Event Losses, Model Validation, Historical
Modeling Event L osses
Framework

1 Short, Karen C. 2022. Spatial wildfire occurrence data for the United States, 1992-2020 . 6th Edition. Fort Collins, CO: Forest
Service Research Data Archive.
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Model Inputs

Homeland Security Infrastructure Program (HSIP) Gold

Description

The Homeland Security Infrastructure Program (HSIP) Gold database

Is assembled by the National Geospatial-Intelligence Agency (NGA) in
partnership with the Homeland Infrastructure Foundation-Level Data (HIFLD)
Working Group for use by Homeland Defense (HD), Homeland Security
(HLS), National Preparedness — Prevention, Protection, Mitigation, Response
and Recovery (NP-PPMR&R) communities. It is a compilation of 560 of

the best available, geospatially enabled baseline infrastructure datasets

for all National & Defense Critical Infrastructure Sectors. HSIP Gold data is
assembled from federal, state, local government and private sector mission
partners. (source: The Homeland Security Infrastructure Program Gold)

Temporal Extent 2005
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Surface Fuel, Surface Fuel: Fire Behavior Fuel Models
Modeling
Framework
LANDFIRE
Description The LANDFIRE fuels data are one of the Landscape Fire and Resource

Management Planning Tools, a joint venture of the USFS and U.S.
Department of the Interior.(source: LANDFIRE)

Temporal Extent

LANDFIRE 2022 data (the underlying data used to create the data set was
captured in 2020)

State Specific Xl Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Spread Model Parameters, lgnition Date and Location, Forest Canopy Fuel
Modeling Surface Fuel, Surface Fuel: Fire Behavior Fuel Models, Forest Canopy Fuel,
Framework Building Data

Monitoring Trends in Burn Severity (MTBS)

Description

MTBS Is an interagency program whose goal is to consistently map the burn
severity and extent of large fires across all lands of the United States from
1984 to present. This includes all fires 1,000 acres or greater in the western
United States and 500 acres or greater in the eastern United States. The
extent of coverage includes the continental U.S,, Alaska, Hawali and Puerto
Rico. In the western states, the MTBS data set includes fires of at least

1,000 acres (defined as the area within the fire perimeter, which is always
larger than the area actually burned) and includes data of ignition, location of
ignition, and total area burned for six classes of fire severity. (source: MTBS)

V= Verisk:
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Model Inputs

Temporal Extent 1984-2020 (Includes a small number of fires from 2021)?
State Specific Xl Yes O No
Data Type Xl Spatial XI Temporal
Use in Verisk Event Generation Overview, Burned Area for Wildland Landscapes, Historical
Modeling Burn Scar Area, Building Wildfire-Weather Models for Each Ecoregion, Ignition
Framework Date and Location, Historical Event Losses, Benchmarking Stochastic
Losses, Estimating Burn Scars of Historical Wildfire Events

National Agricultural Statistics Service (NASS) Cropland Dataset

Description The 2019 Cropland data set from the United States Department of
Agriculture (USDA) NASS is a research data catalog and repository for public
access to data produced during research funded or co-funded by the USDA.
(source: Cropland data set from the USDA National Agricultural Statistics

Service)
Temporal Extent 2019
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Surface Fuel, Surface Fuel: Fire Behavior Fuel Models
Modeling
Framework

National Interagency Fire Center (NIFC)

Description The National Interagency Fire Center (NIFC) is the nation's support center
for wildland fires and other emergency situations. The partners at NIFC
work together to compile information about the current wildfire situation and
statistics that encompass lands managed by federal, state, local, tribal, and
private agencies. The current wildland fire situation is summarized in the
National Fire News and Incident Management Situation Report, produced
by the National Interagency Coordination Center. These reports are available
daily most of the year, and weekly during the winter months. Wildland fire
statistics ranging from the number of fires and acres burned, to federal
suppression costs, to the number of lightning-caused fires ignited are
updated annually. (source: NIFC)

Temporal Extent 2021-2023
State Specific X Yes O No
Data Type Xl Spatial X1 Temporal

2 Verisk scientists used the MTBS data set as the primary data source for 1984-2020 fires of at least 1,000 acres in perimeter
area, but excluded from analysis and modeling any duplicate entries and especially large fires that were not found in press
reports or other data sets. Fire sizes range from 1,000 acres (perimeter area) and larger. The largest fire included in the 2020
1,068,802-acre August Complex in Northern California.
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Model Inputs

Use in Verisk
Modeling
Framework

Event Generation Overview, Historical Burn Scar Area, Building Wildfire-
Weather Models for Each Ecoregion, Historical Wildfires, Estimating Burn
Scars of Historical Wildfire Events

National Land Cover Database (NLCD)

Description

The Multi-Resolution Land Characteristics (MRLC) consortium is a

group of federal agencies who coordinate and generate consistent and
relevant land cover information at the national scale for a wide variety of
environmental, land management, and modeling applications. The creation
of this consortium has resulted in the mapping of the lower 48 United States,
Hawaii, Alaska and Puerto Rico into a comprehensive land cover product
termed, the National Land Cover Database (NLCD), from decadal Landsat
satellite imagery and other supplementary datasets. (source: MRLC)

Temporal Extent

2019

State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Impervious Surface Area
Modeling
Framework

National Oceanic and Atmospheric Administration (NOAA) North
American Regional Reanalysis (NARR)

Description

The North American Regional Reanalysis (NARR) is a model produced by

the National Centers for Environmental Prediction (NCEP) that generates
reanalyzed data for temperature, wind, moisture, soil, and dozens of other
parameters. The NARR model assimilates a large amount of observational
data from a variety of sources to produce a long-term picture of weather over
North America. Wind speed and direction are key environmental variables
that impact wildfire behavior. (source: NOAA Weather Climate Models)

Temporal Extent

1979 - 2014

State Specific X Yes O No
Data Type X Spatial X Temporal
Use in Verisk Spread Model Parameters, Wind, Local Intensity Input Data, Wind Data
Modeling
Framework
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Oak Ridge National Laboratory Building Counts and Location Data

Description The Oak Ridge National Laboratory collects, curates, and delivers unique
geospatial datasets that offer a full picture of human activities, the natural
and built environment, and the interactions among them. The USA Structures
dataset from the Oak Ridge National Laboratory consists of building
footprints (polygons). Verisk researchers converted this dataset into counts
of buildings per grid cell. (source: https://disasters.geoplatform.gov/
USA_Structures/)

Temporal Extent 2023
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Measure of Access to Suppression Resources, Spread Model Parameters,
Modeling Building Data
Framework

Oak Ridge National Laboratory's LandScan

Description Oak Ridge National Laboratory's LandScan sets the community standard
for global population distribution data. Researchers routinely use the high-
resolution database, which won a 2019 Excellence in Technology Transfer
award and a 2006 R&D Top 100 award, to estimate populations at risk and
to plan, aid, and direct disaster recovery efforts in the wake of earthquakes,
tsunamis, hurricanes, and other such events. LandScan uses available data
and satellite imagery to map geographic areas and superimpose layers of
information at an approximate spatial resolution of 1/1200 decimal degrees.
The LandScan datasets have been actively and successfully licensed for 15
years, with updates released annually. (source: https://www.ornl.gov/project/

landscan)
Temporal Extent 2020
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Measure of Access to Suppression Resources, Population Density, Building
Modeling Data

Framework

OpenStreetMap (OSM)

Description OpenStreetMap is built by a community of mappers that contribute and
maintain data about roads, trails, cafés, railway stations, and much more,
all over the world. Contributors use aerial imagery, GPS devices, and low-
tech fleld maps to verify that OSM is accurate and up to date.(source:
OpenStreetMap)

Temporal Extent Verisk downloaded the Golf course polygons from the OpenStreetMap
(OSM) in March 2021. OpenStreetMap data are continuously updated by
contributors, therefore there is no fixed vintage.
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State Specific Xl Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Surface Fuel, Surface Fuel: Fire Behavior Fuel Models
Modeling
Framework

Self-calibrating Palmer Drought Severity Index (scPDSI)

Description

The Self-calibrating Palmer Drought Severity Index (scPDSI) is a variant

on the original Palmer Drought Severity Index (PDSI) of Palmer 1965, with
the aim to make results from different climate regimes more comparable
As with the PDSI, the scPDSI is calculated from time series of precipitation
and temperature, together with fixed parameters related to the soil/surface
characteristics at each location. (source: DROUGHT INDICES (scPDSI))

Temporal Extent

1901-2022

State Specific Xl Yes O No
Data Type Xl Spatial XI Temporal
Use in Verisk Burned Area for Wildland Landscapes, Drought Index, Accounting for Climate
Modeling Change QOverview, Seasonal Weather Variables, Saturation Vapor Pressure
Framework (SVP), Verisk Drought Index,

Tiger Primary and Secondary Road Datasets

Description

Many wildfires are started each year due to direct and indirect human
influence (for example, abandoned campfire or power lines). Distance to
roadway is considered as a driver of wildfire ignition probability. (source:
2015 Tiger Primary and Secondary Road state-based datasets )

Temporal Extent 2015
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Event Generation Overview, Ignition Location and Spatial Distribution of Fires,
Modeling
Framework
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USGS National Elevation Data Set (NED)

Description

The U.S. Geological Survey has developed a National Elevation Database
(NED).The NED Is a seamless mosaic of best-avallable elevation data.

The 7.5-minute elevation data for the conterminous United States are the
primary initial source data. In addition to the availability of complete 7.5-
minute data, efficient processing methods were developed to filter production
artifacts in the existing data, convert to a consistent datum, edge-match, fill
slivers of missing data at quadrangle seams, recast the data to a consistent
geographic projection and convert all elevation values to decimal meters as a
consistent unit of measure. The USGS Elevation site is located here. National
Elevation Dataset Metadata and the data dictionary is located here. (source:
USGS EROS)

Temporal Extent 2018
State Specific X Yes O No
Data Type X1 Spatial O Temporal
Use in Verisk Topography
Modeling
Framework

\Verisk FireLine®

Description Verisk FireLine considers vegetative fuels, terrain/slope, and road access to
understand property-specific risk factors. (source: Verisk Firel ine)
Temporal Extent 2019-2022
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Surface Fuel, Surface Fuel: Fire Behavior Fuel Models, Ignition Date and
Modeling L ocation
Framework

Verisk Industry Exposure Database (IED)

Description

The Verisk United States Industry Exposure Database is a detailed collection
of exposure data containing information on insurable properties and their
respective replacement values, along with information about the occupancy
and physical characteristics of the structures, such as construction types

and height classifications. Verisk's Industry Exposure Database provides the
foundation for all modeled industry loss estimates. It provides breakdowns

of all insurable properties by line of business (LOB), as well as replacement
values and policy conditions by coverage for each ZIP code. (source: Industry
Exposure Database )

V= Verisk:

©2025 Verisk Analytics

Temporal Extent 2022
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Use in Verisk Secondary Risk Characteristics for Wildfire, Comparison of Modeled Losses
Modeling to the Target Losses, Creating Target Losses for the Historical Event Set,
Framework Benchmarking Stochastic Losses, Analysis Settings for Touchstone

Verisk Property Claim Services (PCS)

Description Verisk's Property Claim Services (PCS) offers claims data for all the 56
catastrophic events that happened in the past 50 years in the U.S. Verisk
uses claims data to both create damage ratios and validate the models.
Claims data helps estimate damage ratios, which indicate the proportion of
the insured asset value lost due to a catastrophe, providing insights into the
financial impact of future events. It also serves as a real-world benchmark
to validate and calibrate the accuracy of models, and help in better risk
assessment and management. (source: \Verisk PCS)

Temporal Extent 1975-2024
State Specific X Yes O No
Data Type Xl Spatial X1 Temporal
Use in Verisk Model Validation, Estimating Burn Scars of Historical Wildfire Events ,
Modeling Comparison of Modeled Losses to the Target Losses, Comparison of
Framework Modeled Losses to the Target Losses, Loss Comparison by Lines of

Business (LOB

Wildland Urban Interface (WUI) map from United States Forest
Service's (USFS)

Description The wildland-urban interface (WUI) is the area where houses meet or
intermingle with undeveloped wildland vegetation. This makes the WUl a
focal area for human-environment conflicts such as wildland fires, habitat
fragmentation, invasive species, and biodiversity decline. Using geographic
information systems (GIS), we integrated U.S. Census (2010) and USGS
National Land Cover Data (2006), to map the Federal Register definition of
WUI (Federal Register 66:751, 2001) for the conterminous United States.
These data are useful within a GIS for mapping and analysis at national,
state, and local levels. (source: The 2010 wildland urban Interface of the
Conterminous United States geospatial data sets (Martinuzzi et al., 2015)

Statistics)
Temporal Extent 2010
State Specific X Yes O No
Data Type Xl Spatial O Temporal
Use in Verisk Event Generation Qverview, Ignition and Burn Footprint, Surface Fuel: Fire
Modeling Behavior Fuel Models

Framework
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3.2  Model Variables

Model variables are key components across the different model modules that must be
calculated from the raw data listed above in Raw Data Inputs. For each model variable listed
below, an understanding is provided about the formulation of the variable, its use in the model
and relevant constraints put into place by Verisk.

Historical Burn Scar Area

Source(s) Monitoring Trends in Burn Severity (MTBS), Fire Occurrence Database (FOD),
National Interagency Fire Center (NIFC), Ecoregions, California Department of
Forestry and Fire Protection (CAL FIRE) Redbooks

Formulation The wildfire hazard is related to model pixels (90 x 90 m cells) that burn.
For each simulated fire, these pixels are collectively called a burn scar and
reflect the area of land actually burned in a wildfire. The burn scar differs
from — is smaller than — the area of wildfire that is generally reported (e.g,,
in wildfire statistical databases and media reports) because a full wildfire
footprint (area inside a perimeter) often includes areas that are not burned.
Verisk determined relationships between burn scar areas and total wildfire
areas reported in wildfire databases through analysis of severity levels in the
Monitoring Trends in Burn Severity (MTBS) data set that divides individual
fire footprints into fractions of differing burn severity. The MTBS includes
six levels of burn severity for fires. Verisk scientists combined fire areal
fractions associated with levels 2, 3, and 4 to define the burn scar area of
each wildfire. For each ecoregion, a linear equation (capped at a value of 1.0)
was determined relating the burn scar fraction of individual historical fires
(i.e., the ratio of burn scar area to total reported fire area) to total reported fire
area for all MTBS fires. Those equations were then applied to all historical
fires in the FOD and NIFC datasets not also included in the MTBS dataset,
and combined with Verisk-derived burn scar areas in the MTBS dataset, to
create a full Verisk historical ecoregion-based burn scar area dataset.

Use in Model Event Generation Overview, Estimating Burn Scars of Historical Wildfire
Events , Historical Burn Scar Area Estimation, Verisk Drought Index, Annual

Total Burn Scar Area under Near-present Climate, Building Wildfire-Weather
Models for Each Ecoregion, Comparisons of Historical Burn Scar Areas with
Wildfire-Weather Models, Recasts of Historical Burn Scar Areas , Recasts
Throughout the Model Domain, Model Validation

Variable Type XiRisk-related O Loss-related O Expense-related

Saturation Vapor Pressure (SVP)

Source(s) Climatic Research Unit Timeseries (CRU TS 4.06), Self-calibrating Palmer
Drought Severity Index (scPDSI)
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Formulation Saturation vapor pressure (SVP) is the maximum amount of water vapor
the atmosphere could hold before it is saturated. There are many published
approaches to calculating SVP, which is a strong function of air temperature
and a weak function of atmospheric pressure (over the normal ranges of
atmospheric temperature and pressure). The Verisk model used equations
from Alduchov and Eskridge (1996) for saturation vapor pressure over
a surface of water.® The average daily minimum SVP (in hPa, which is
equivalent to mbar) during each month was calculated from the minimum
daily average minimum temperature, and the average daily maximum
SVP during each day was calculated from the maximum daily average
temperature as follows:

+ Minimum saturation vapor pressure (WPa = mbar) = 6.1413 -
17625 T,
e><p[ ( mm)
(24304 + T
+ Maximum saturation vapor pressure (hPa = mbar) = 6.1413 -
(17625 Tmax)

ex

" Ga308 + T,
Where Trin and Tmay are the daily average minimum and maximum air
temperatures (°C), respectively, from the CRU weather dataset mapped
onto the model Ecoregions.

min)

The average daily value of saturation vapor pressure during each month in
the wildfire model is estimated by averaging the minimum and maximum
saturation vapor pressures. This is a coarse simplification because the
saturation vapor pressure can vary during a single surmmer day by a factor
of at least three, and the saturation vapor pressure also varies, sometimes
considerably, between the days in a month. Nonetheless, for modeling large
areas over long time periods with the intent of understanding key drivers of
wildfire behavior, this approach, when applied consistently across locations
and times, has considerable explanatory power and is a key approach
adopted for scientific wildfire research (e.q., Seager et al., 2015).

Use in Model Vapor Pressure Deficit (VPD), Model Validation

Constraints/ « Tmin and Tmax are the daily average minimum and maximum air
Boundary temperatures (°C), respectively, from the CRU weather dataset mapped

Implemented onto the model Ecoregions.

Saturation vapor pressure is strongly and positively related to air
temperature. When VPD Is zero, the relative humidity is 100%.

Variable Type XIRisk-related O Loss-related O Expense-related

Vapor Pressure Deficit (VPD)

Source(s) Climatic Research Unit Timeseries (CRU TS 4.06)

Formulation Vapor Pressure Deficit (VPD) is the difference between Saturation Vapor
Pressure (SVP) and Actual Vapor Pressure (AVP). In order to estimate VPD,
Verisk researchers used AVP provided in the CRU monthly gridded weather
dataset, but the dataset does not include SVP, The SVP was calculated from
other variables explained in Saturation Vapor Pressure (SVP) .

3 At the large spatial scale of the model (and grid size of the CRU dataset) and the averaging of meteorological variables over
monthly periods, many approximations to SVP would suffice for the present purpose.
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Use in Model Seasonal Vapor Pressure Deficit (VPD) variables, Verisk Drought Index
Building Wildfire-Weather Models for Each Ecoregion, Seasonal Weather
Variables, Event Generation Overview, Accounting for Climate Change
Overview

Constraints/ Temperature and precipitation data from 1901-2022 are used.

Boundary
Implemented
Variable Type XlRisk-related O Loss-related O Expense-related

Seasonal Weather Variables

Source(s) Climatic Research Unit Timeseries (CRU TS 4.06), Self-calibrating Palmer
Drought Severity Index (scPDSI), Vapor Pressure Deficit (VPD), Ecoregions

Formulation There are 30 seasonal weather variables considered to develop wildfire-
weather relationships, in each ecoregion. These include antecedent
precipitation and drought index values for up to two prior years.

Use in Model Relationship between Weather and Wildfire Area, Historical Trends, Annual
Total Burn Scar Area under Near-present Climate, Generating Seasonal
Weather Variables , Generating a Recast of Historical Weather to Represent
Near-present Climate, Building Wildfire-Weather Models for Each Ecoregion
Comparisons of Historical Burn Scar Areas with Wildfire-Weather Models,
Recasts of Historical Burn Scar Areas , Model and Catalog Development

Variable Type XlRisk-related O Loss-related O Expense-related

Seasonal Precipitation Variables

Source(s) Climatic Research Unit Timeseries (CRU TS 4.06)

Formulation For each defined season, the average total precipitation in mm is derived.
Autumn/Fall (SON) precipitation, mm/month
Spring (MAM) precipitation, mm/month
Summer (JJA) precipitation, mm/month
Winter (DJF) precipitation, mm/month (Dec is previous year)
precipitation during previous year (12 months), mm/month
precipitation two years ago (12 months), mm/month
Jan-Jun precipitation, mm/month

Use in Model Historical Trends

Variable Type XIRisk-related O Loss-related O Expense-related

Seasonal Self-calibrating Palmer Drought Severity Index (scPDSI) Variables

‘ Source(s) Self-calibrating Palmer Drought Severity Index (scPDSI) ‘
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Formulation For each defined season, the average scPDSI variables are defined as:
Autumn/Fall (SON) scPDSI
Spring (MAM) scPDS|
Summer (JJA) scPDSI
Winter (DJF) scPDSI (Dec is previous year)
Apr-Oct scPDSI
scPDSI change from Feb to Aug this year
scPDSI change from last Aug to this Aug
scPDSI change from last Feb to this Aug
scPDSI change from Aug two years ago to this Aug

Use in Model Historical Trends

Variable Type XlRisk-related O Loss-related O Expense-related

Seasonal Temperature Variables

Source(s) Climatic Research Unit Timeseries (CRU TS 4.06)
Formulation For each defined season, the seasonal average temperature variables are
defined as:

Autumn/Fall (SON) Tmin, °C

Spring (MAM) Tmin, °C

Summer (JJA) Tmin, °C

Winter (DJF) Tmin, °C (Dec is previous year)
Autumn (fall, SON) Trnax, °C

Spring (MAM) Tmax, °C

Summer (JJA) Tmax, °C

Winter (DJF) Tmax, °C (Dec is previous year)
May-Oct Tmax, °C

Use in Model Historical Trends

Variable Type XiRisk-related O Loss-related O Expense-related

Seasonal Vapor Pressure Deficit (VPD) variables

Source(s) Vapor Pressure Deficit (VPD)

Formulation For each defined season, the seasonal VPD variables are defined as:
Autumn/Fall (SON) VPD, mbar
Spring (MAM) VPD, mbar
Summer (JJA) VPD, mbar
Winter (DJF) VPD, mbar (Dec is previous year)
May-Oct VPD, mbar
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Use in Model Historical Trends

Variable Type XIRisk-related O Loss-related O Expense-related

Verisk Drought Index

Source(s) Self-calibrating Palmer Drought Severity Index (scPDSI), Historical Burn Scar
Area, Ecoregions

Formulation A Verisk Wildfire Drought Index was developed for each year in each
ecoregion in the model based on historical relationships between self-
calibrating Palmer Drought Severity Index (scPDSI) values and annual wildfire
area. The Drought Index was projected to the near-present climate based on
trends in the underlying scPDSI data. There is one Drought Index value for
each ecoregion-year combination; it does not vary seasonally during a year.
The Drought Index is used by the wildfire spread module as a broad indicator
of interannual variation in Fuel Moisture,

Use in Model Generating a Recast of Historical Weather to Represent Near-present

Climate, Fuel Moisture, Drought Index

Constraints/ A drier fuel is more likely to carry a more intense fire. The Verisk wildfire
Boundary Drought Index has possible values of =2, -1, 0, +1, and +2.

Implemented

Variable Type XiRisk-related O Loss-related O Expense-related

Annual Total Burn Scar Area under Near-present Climate

Source(s) Historical Burn Scar Area, Seasonal Weather Variables

Formulation For each ecoregion, Verisk scientists created a 39-year time series of total
annual burn scar area that represents a near-present climate — a burn scar
area recast — by using trends and variability in the historical weather data and
historical burn scar area data from 1984-2022.

Use in Model Model and Catalog Development, Generating a Recast of Historical Weather

to Represent Near-present Climate

Variable Type XIRisk-related O Loss-related O Expense-related

Surface Fuel

Source(s) LANDFIRE, ESA WorldCover, National Agricultural Statistics Service (NASS)
Cropland Dataset, Homeland Security Infrastructure Program (HSIP) Gold
OpenStreetMap (OSM), Verisk Firel ine®, Wildland Urban Interface (WUI) map
from United States Forest Service's (USFES)
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Formulation

Use in Model

Variable Type

The LANDFIRE fuels data set was modified by Verisk to reflect additional
fuels information that had been determined to be critical for fire spread and
intensity.
Some land cover types that are identified as burnable in LANDFIRE but
that typically do not support wildfire (e.qg., golf courses and some kinds of
irrigated agriculture may be categorized by LANDFIRE as timber, grass or
shrubs but rarely, if ever, burn in wildfires) were designated as unburnable
in the modified database

The designation of some land cover types that may be identified as
unburnable in LANDFIRE but that can carry fire was modified in the
database (e.g., avocado groves may be categorized by LANDFIRE
as unburnable agriculture but have been observed to burn in recent
California wildfires).

Fuel category changes — from burnable to unburnable — were made
using data from Verisk Fireline® product (2019-2022) because it
reflects a more recent view of land use/land cover changes than the
LANDFIRE data set. This allows the model to incorporate areas of recent
construction in the Wildland Urban Interface (WUI)

Each 90-m X 90-m grid cell in the model domain was assigned one of the

40 burnable fuel categories or five unburnable categories as described by
Scott and Burgan (2005).

Local Intensity Input Data, Surface Fuel: Fire Behavior Fuel Models, Forest

Canopy Cover, Fire Spread in Wildland Areas, Event Generation Overview,
Smoke Potential Index (SP1)

XlRisk-related O Loss-related O Expense-related

Fuel Moisture

Source(s) Verisk Drought Index

Formulation Using the Verisk Drought Index that was developed for each fire ignition
event, Verisk scientists assigned values for the individual fuel moisture
contents guided by the moisture scenarios described in Scott and Burgan
(2005). Using this approach, the fuel moisture conditions in which any
given stochastic fire spreads are consistent with the expected large scale
environmental conditions for that stochastic year.

Use in Model Local Intensity Input Data, Fuel Moisture, Surface Spread

Variable Type XIRisk-related O Loss-related O Expense-related

Measure of Access to Suppression Resources

Source(s)

Oak Ridge National Laboratory's LandScan
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Formulation Since wildfires can occur at all times of day, likely suppression activities
for both daytime and nighttime cases are accounted for (e.g., schools and
commercial businesses tend to have low nighttime population levels but high
daytime population levels, whereas residential buildings tend to have low
daytime population levels but high nighttime population levels). The model
smooths the maximum daytime and nighttime population values because
the scale of suppression activities are likely to be slightly larger than the 90-m
X 90-m grid cell.

Use in Model Population Density, The Fire Spread Algorithm, Fire Spread in Urban Areas,

lgnition Probability and Suppression, Fire and Smoke Damage Functions

Variable Type XiRisk-related O Loss-related O Expense-related
Wind
Source(s) National Oceanic and Atmospheric Administration (NOAA) North American

Regional Reanalysis (NARR)

Formulation For each stochastic fire event ignition, an autoregressive integrated moving
average (ARIMA) time series model simulates wind conditions over multiple
time scales (i.e., month, day, hour) for each 32-km X 32-km grid cell in
the NARR data set. The model creates typical winds for a given NARR cell
for a particular month and time of day; wind speed and direction change
every three hours, creating a realistic pattern consistent with historical wind
data. The appropriate model is selected based on the location (grid cell) and
month. Once an ARIMA model has been selected, the same model is used
throughout the event to ensure time series consistency, even if the fire grows
into another grid cell or crosses into another month. Thus, the model will
represent the monthly conditions at the time of ignition. In addition, the model
features downslope wind events that regularly occur in parts of the model
domain during certain times of the year (typically autumn/winter). These
include Diablo and Santa Ana winds in northern and southern California.

The downslope winds increase fire intensity and rate of spread, and limit
simulated suppression activities

Use in Model Event Generation Overview, [gnition Day Probability , Local Intensity Input
Data, Wind Data, The Fire Spread Algorithm, Fire Spread in Wildland Areas,
Smoke Potential Index (SP1)

Variable Type XlRisk-related O Loss-related O Expense-related

Smoke Potential Index (SPI)

Source(s) Surface Fuel, Wind
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Formulation

Use in Model

The flame length intensity is calculated within the fire perimeter but soot
damage can occur both inside and outside the fire perimeter. The model
uses the assumption that damage causing soot outside of a fire's perimeter
occurs only within 20 km of the fire perimeter, and within the smoke-damage
area, the SPI is calculated on a 1-km X T-km grid

The SPI estimated at each SPI grid cell depends on three indices calculated
for each smoke-emitting cluster: a soot index fsoot (between 0 and 1), a wind
index (which depends on speed and direction between the SPI grid cell and
the smoke-emitting cluster) fwind, and a distance index fdist (between 0 and
1). SPI is the sum from each cluster of the product of these three indices:
fsoot X fwind X fdist.

Wildfire Smoke Hazard Model, Fire and Smoke Damage Functions

Variable Type

O Risk-related X Loss-related O Expense-related

3.3

Historical Wildfires

The Verisk Wildfire Model for the United States offers a Historical Event Set with 31 major loss-
causing historical events. Data for these fires came from National Interagency Fire Center (NIFC)
and California Department of Forestry and Fire Protection (CAL FIRE) Redbooks. The Rodeo-
Chedeski fire in Arizona is the largest in area in this set (460,000 acres), the Oakland Hills (Tunnel)
fire in California is the smallest (less than 2,000 acres). These reported areas are typically with
respect to a fire perimeter; the Verisk model is based on burn scars, which cover less area than
that reflected by a typical reported fire perimeter.

Table 2. The Historical Event Set Available for the Verisk Wildfire Model for the United

States
Fire Name State Ecoregion Year Acres Burned
Oakland Hills California 6 1997 1,767
Laguna Canyon California 85 1993 12,870
Old Topanga California 85 1993 16,983
Cerro Grande New Mexico 21 2000 44,164
Rodeo-Chediski Arizona 23 2002 461,606
Cedar California 85 2003 263,891
old California 8 2003 85,863
Witch California 86 2007 134,738
Fourmile Canyon Colorado 21 2010 5,684
Bastrop County Texas 33 2011 26,250
Complex

V= Verisk:

©2025 Verisk Analytics

Required Model Documentation for the PRID-2025-00001 21



http://www.verisk.com

Model Inputs

Fire Name State Ecoregion Year Acres Burned
Waldo Canyon Colorado 21 2012 19,661
Black Forest Colorado 26 2013 10,924
Valley* California 6 2015 74,045
Butte* California 5 2015 66,976
Tubbs« California 6 2017 30,614
Atlas California 6 2017 40,834
Nuns* California 6 2017 45,297
Mendocino Lakex California 78 2017 48,273
Thomasx California 85 2017 245,302
Camp~ California 5 2018 123,844
Woolsey* California 85 2018 93,623
CZU Lightning California 1 2020 83,081
Complexx*
Beachie Creek= Oregon 4 2020 185,340
LNU Lightning California 6 2020 315,000
Complex*
Holiday Farm= Oregon 4 2020 163,153
Babb=* Washington 10 2020 14,489
Almeda Drivex Oregon 78 2020 3212
Glass« California 6 2020 64,472
East Troublesomex Colorado 21 2020 169,221
Marshall Colorado 25 2021 6,263
Hermits Peak New Mexico 21 2022 324,065

Verisk has claims data for the historical wildfire events marked with an asterisk () in Table 2.
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4 Verisk Catastrophe Modeling
Framework

The Verisk Wildfire Model for the United States is a catastrophe model. Catastrophe models
are computer programs that mathematically represent the physical characteristics of natural
catastrophes, terrorism, and extreme casualty events.

Due to the infrequent nature of severe events like earthquakes, hurricanes and wildfires, historical
data often fails to provide a reliable basis for assessing future losses. Consequently, catastrophe
models are used to probabilistically simulate a wide range of possible scenarios, capturing the
full spectrum of potential events and their impacts. This approach helps organizations prepare
more effectively for the financial repercussions of such disasters by generating numerous
simulated events and estimating the associated losses based on current scientific data.

The catastrophe modeling framework illustrated in Eigure 1 applies to all Verisk property models.

Hazard
Engineering > Financial >
I | I I
Event Local Intensity Damage Insured Loss
Generation Calculation Estimation Calculation
Exposure )
Data Palicy

Conditions

Figure 1. Verisk Catastrophe Modeling Framework

Each component is described in Table 3. The methodologies applied to develop each of these
modules are described in the sections below.

Table 3. Components of the Catastrophe Modeling Framework

Module Model Description
Component
Hazard Event Large catalogs of simulated events capture the frequency, severity,
Module Generation location, and other characteristics of the entire spectrum of plausible
catastrophes.
Local For each simulated event, the model calculates the intensity of the
Intensity hazard at each location within the affected area.
Calculation
Input Exposure Exposure data are an input from the insurer and captures
from Data information about the property, replacement value and physical
insurers characteristics. For more information see section User Input
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Module Model Description
Component
Engineering | Vulnerability/ The measures of intensity of simulated catastrophic events are
Module Damage applied to highly detailed information about the properties that are
Estimation exposed to them. Equations called damage functions are developed
and used to compute the level of damage that is expected to
occur to buildings of different types of construction and different
occupancies, or usages, as well as to their contents, and to other
lines of business, such as marine, large industrial, and auto.
Input Policy Policy conditions are inputs from the insurer and captures
from Condition information about the policy terms and conditions.
insurers
Financial Insured Policy terms and conditions are applied to estimate insured losses
Module Loss to create probability distribution of loss. This probability distribution
Overview Calculation of losses, called an exceedance probability curve, reveals the

probability that any given level of loss will be surpassed in a given
time period—for example, in the coming year. (The probabilities can
also be expressed in terms of return periods. For example, the loss
associated with a return period of 20 years has only a 5% chance of
being exceeded this year, or in one year out of 20, on average.) Loss
probabilities can be provided at any geographic resolution—for the
entire insurance industry, for a particular portfolio of buildings, or for
an individual property.
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5 Hazard Module Overview

The hazard component of catastrophe models answers the questions: Where are future events
likely to occur? How large, or severe, are they likely to be? And how frequently are they likely to
occur? Large catalogs comprising tens of thousands of computer-simulated catastrophes are
generated, representing the broad spectrum of plausible events.

For each simulated event, the model calculates the intensity at each location within the affected
area. For example, wildfire intensity is measured as flame length.

The hazard components of catastrophe models are built by teams of highly qualified scientists,
including meteorologists, climate scientists, seismologists, geophysicists, and hydrologists
whose job Is to keep abreast of the scientific literature, evaluate the latest research findings,
and conduct original research of their own. In doing so, they take a measured approach to
incorporating the most advanced science.

The Verisk Wildfire Model for the United States accounts for the increasing size of wildfires in
the model domain as a whole (although there are regional variations), shifts in climate patterns
and their effects on wildfire area, and increased exposure in wildfire-prone areas (notably the
increased exposure in the wildland-urban interface in California).

51 Event Generation Overview

The event generation component of the Verisk Wildfire Model for the United States defines the
ignition location, the ignition date and time, and the total area of the burn scar. To relate modeled
spatial and temporal variation in wildfire activity to key environmental factors that influence
wildfire behavior, the model domain is divided into 45 Ecoregions. Within each ecoregion, the
biological/ecological systems, climate, and physical properties such as soil and topography are
relatively homogenous (at least at a regional rather than local scale), as are the relationships
between organisms and their environments (Omernik, 1987). Wildfire-weather relationships,
ignition dates, and individual fire size distributions are modeled at the ecoregion level, rather than,
for example, within boundaries of ZIP codes, counties, or states. This ecoregion-based approach
Is used In particular because Verisk scientists (and others) observe ecoregion-dependent
consistencies in relationships between weather/climate and the frequency and size of wildfires.

Accounting for key effects of recent climatic change on wildfire frequency, area, and intensity
was a key model design criterion. Verisk is committed to representing the norms and variation
inherent in climate and their impact on the modeled perils accounting for changes that have
already occurred during the historical record. To accomplish this goal, Verisk scientists created
time-dependent statistical models of the relationships between weather and wildfire size and
frequency in the different Ecoregions using historical data. Recent trends in weather in each
ecoregion were extrapolated in time to represent the distribution of environmental conditions
affecting wildfire in the current and near-present climate. The wildfire-weather relationship
models were then driven by this adjusted distribution of climate to build a view of wildfire risk
across the model domain that represents this projected near-present climate.
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The following steps outline the process of creating the stochastic wildfire events, more detailed
descriptions of each step are in other sections of this document:

1.

For each stochastic year and in each ecoregion, Verisk scientists assigned an annual total
burn scar area for fires ignited in the ecoregion that is consistent with near-present climate.
Each ecoregion-year combination is unique and maintains key correlations in area burned
between ecoregions.

The annual total burn scar area for fires ignited in each ecoregion was assigned to individual
fires of at least 50 acres (burn scar area), each with its own maximum burned area, based
upon ecoregion-specific distributions of individual-fire area. These fire area distributions are
based upon historical patterns in each ecoregion and recent trends in in sizes of individual
fires. Recent trends were considered because in many ecoregions individual fires have
become larger, sometimes significantly so, over recent decades.

Ignition dates and times were assigned to each fire based on ecoregion-specific ignition date
distributions.

Ignition locations were assigned to each fire for both natural and human-caused wildfires,
proximity to known drivers of ignitions (e.q., population, roads), and availability of enough fuel
to meet the target burn scar area.

Wildfires were spread from their ignition locations based on stochastic wind, topography,
fuel amount and type, and generation and transport of embers. Fires were free to cross
ecoregion boundaries when fuel, topography, and wind dictated it.

Finally, individual fires were clustered into events based on time and distance between
ignition dates and locations based on typical reinsurance terms.

Table 4. Event Generation Data Inputs

Historical Burn Scar Area

Climatic Research Unit Timeseries (CRU TS 4.06) and Vapor Pressure Deficit (VPD)

Surface Fuel

Tiger Primary and Secondary Road Datasets

Wildland Urban Interface (WUI) map from United States Forest Service's (USFS)

5.2  Historical Burn Scar Area Estimation

Typical reports of wildfire area are based on an area within a generalized fire perimeter. In fact,
for many small wildfires and most large wildfires, some of the area inside the perimeter does not
burn. Because modeled wildfire intensity is based on flame length — which exists only in burned
areas (pixels) — Verisk model development and analyses of wildfire data focused on acres that
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were burned, or burn scar acres.* When comparing Verisk wildfire model fire burn scar areas to
historical fire reports, burn scars are almost always smaller than total fire area reported.

The model uses several data sets as input, including Monitoring Trends in Burn Severity (MTBS)
data set and the Fire Occurrence Database (FOD). The MTBS includes six levels of burn severity
for fires greater than at least 1,000 acres; Verisk scientists used levels 2, 3, and 4 (combined) to
define the burn scar area of a wildfire.

To estimate burn scar areas for 50-1,000 acre fires, Verisk scientists determined ecoregion-

and fire size-dependent statistical relationships between the reported total wildfire size and

burn scar size for all wildfires that had a reported perimeter of at least 1,000 acres and applied
these relationships to the 50 —1,000-acre fires in the FOD. A similar procedure was applied to
historical wildfire data from National Interagency Fire Center (NIEC) for the years 2021 and 2022.
After making burn scar corrections to all three historical datasets (MTBS, FOD, and NIFC), Verisk
combined the data to create an historical dataset of total annual burn scar area for each of the
45 ecoregions in the model domain for each of the years in the 1984—2022 period: the 1984—
2022 Verisk historical ecoregion-based burn scar area database.

Only those fires that had burn scars that were at least 50 acres were used for analyses,
modeling, or in the development of ecoregion-specific wildfire-weather models. The fraction of
area in the perimeter that is in the burn scar varied between ecoregions (and with fire size) and
for the different ecoregions ranged from about 0.7 to about 0.9, with an overall mean value about
0.8

5.3  Generating Seasonal Weather Variables

Thirty seasonal variables were used to develop models of wildfire-weather relationships in each
ecoregion. Extrapolation of the seasonal weather variables using recent trends in the historic
data were then used to model wildfire area for the near-present climate. These 30 seasonal
variables are available in the Seasonal Temperature Variables, Seasonal Precipitation Variables
Seasonal Self-calibrating Palmer Drought Severity Index (scPDSI) Variables, and Seasonal Vapor
Pressure Deficit (VPD) variables sections of the Model Variables.

5.4  Generating a Recast of Historical Weather to Represent
Near-present Climate

Wildfire activity in many parts of the model domain is strongly influenced by seasonal weather,
and there have been strong trends in many weather variable values in recent decades.® Because

4 Because smoke damage to property can occur outside the burn scar, the footprint for model smoke damage is up to 20 km
outside of this area (see the Wildfire Smoke Hazard Intensity — Smoke Potential Index in the Local Intensity chapter).

5 Thereis alarge scientific literature base suggesting that future climatic change will increase wildfire area, frequency, and/
or intensity. For additional information, see National Research Council 2011. Climate Stabilization Targets: Emissions,
Concentrations, and Impacts over Decades to Millennia. Washington, DC: The National Academies Press.
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a central goal of the Verisk Wildfire Model for the United States is to reflect current and near-
present views of risk — that is, to account for the effect climate change is already having on the
weather variables that influence wildfire area — observed weather trends were extrapolated. This
extrapolation accounts for changes in the long-term averages of observed weather variables but
retains the interannual variation which is largely stationary in the observed period.
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Figure 2. Historical summer (June-August) average daily maximum air temperature in
the Southern Rockies (ecoregion 21), and a recast extrapolated to year 2027 (midpoint of
2025-2029)

Although Southern California is a particularly important region with respect to loss-causing
wildfires, it is difficult to generalize about future climatic change-driven wildfire changes there
(e.qg., Dye et al, 2023). Eigure 3 shows the average daily maximum air temperature recast to year
2027 in the Southern California/Northern Baja Coast (ecoregion 85). Modest warming is seen

in the past two decades with considerable interannual variation in summer daytime maximum
temperature. The changes in climate variables have been modest in recent years, making
analysis of trends difficult; the main climate factors in southern California in recent decades are
the interannual variability in different weather variables rather than strong climate trends.
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Figure 3. Historical summer (averages for June, July and August) average daily maximum
air temperature in the Southern California/Northern Baja Coast (ecoregion 85), and a recast
extrapolated to year 2027
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5.5 Bullding Wildfire-Weather Models for Each Ecoregion

Verisk scientists built wildfire-weather models for each ecoregion using a multivariable
regression approach. Because annual variation in wildfire area is typically lognormally
distributed, the dependent variable in the wildfire-weather models is logyg(acres burned) for each
year in each ecoregion. This is standard practice (e.g., Westerling et al, 2003: Littell et al., 2009;
Abatzoglou and Williams, 2016; Keeley and Syphard, 2017: Willlams et al, 2019) and statistically
and ecologically justified.

A step-wise multivariable regression approach with intercept term was used to identify weather
variables that are significant drivers of total annual burn scar area in each ecoregion from the 30
seasonal weather variables. In most of the 45 ecoregion-specific wildfire-weather models, total
annual area burned was driven by only one or two seasonal weather variables. To avoid model
overfitting, no more than four weather variables were used in any ecoregion-specific wildfire-
weather model. Model weather variables were chosen based on knowledge of the mechanisms
that govern how different weather variables relate to wildfire area in different ecological systems
(e.q., summer maximum temperatures in some forest ecosystems, and antecedent precipitation
In some water-limited ecosystems). The research team removed potential explanatory variables
that were redundant with other variables within a wildfire-weather model (e.g., because daily
vapor pressure deficit is causally linked to daily maximum temperature, they were not both
allowed to be included in any model) and variables with no known causal mechanism for
influencing wildfire extent in particular ecoregions were also excluded (see Smith, 2018, for
related discussion).

Weather and climate play important roles in the interannual variability of area burned by wildfire
In some ecoregions but have limited influence in other ecoregions. This is recognized within the
wildfire scientific research community and confirmed by independent Verisk research. In the
Western United States, interannual variation in wildfire area in forested systems is often more
strongly related to interannual variation in weather than is wildfire area in other systems. For
example, analyses presented in Williams et al. (2019) indicated that about 52% of the interannual
variation in wildfire area in the largely forested North Coast and Sierra Nevada regions of
California can be explained by the interannual variation in March-October Vapor Pressure
Deficit (VPD), whereas the single best predictor in their analysis (i.e., antecedent standardized
precipitation index, SPI) explained less than 4% of interannual variation in wildfire area in the
Central Coast and South Coast regions of California.

Consistent with that finding, Verisk scientists found relatively weak relationships between

annual total wildfire burn scar areas and weather variables in the Southern California Mountains
(ecoregion 8) and Southern California/Northern Baja Coast (ecoregion 85); the Verisk wildfire-
weather model for the Southern California Mountains ecoregion is a single-variable model

and has an r’of about 0.15 and the Verisk wildfire-weather model developed for the Southern
California/Northern Baja Coast ecoregion is a two variable model and has an r’ of 0.29. Those
two ecoregions have considerable industry exposure and some of the largest insured wildfire risk
In the 13-state model domain.
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Recasts of Historical Burn Scar Areas

A key feature of the Verisk Wildfire Model for the United States is its near-present view of risk
associated with the changing climate in the Western United States.

For each ecoregion, Verisk scientists created a 39-year time series of total annual burn scar
area that represents a near-present climate — a burn scar area recast — by using trends and
variability in the historical weather data and Historical Burn Scar Area data from 1984 to 2022.
The methodology retained the relative interannual variations in annual total burn scar area within
each ecoregion,® while accounting for decadal-scale weather trends relevant to the near-present
climate. Also, the methodology was designed to maintain the important historical correlations in
annual total burn scar area between Ecoregions.

Recasts Throughout the Model Domain

There was wide variation in the impact of climate change on the recasts of historical annual total
burn scar areas in different Ecoregions. In seven (of the 456) ecoregions, the climate-change-
based recast indicated less risk in the near-present climate relative to the historical period
1984-2020. In the five ecoregions that experienced double digit declines in burn scar area in the
climate-based recast, the Historical Burn Scar Area are a small fraction of total ecoregion area
so the percentage changes do not mean that there were large absolute shifts in the area burned
as a fraction of total ecoregion area. In the other 38 ecoregions, the near-present climate caused
small to large increases in annual total burn scar area relative to historical data. The largest
relative increases in average annual total burn scar area were in the Sierra Nevada (ecoregion 5)
in eastern California and the Klamath Mountains/California High North Coast Range (ecoregion
78) in northwestern California and southwestern Oregon. Both those ecoregions, and several
others with large increases in climate-change related increases in burn scar area, contain
significant amounts of forest with strong seasonality of weather, including warm dry summers.

6 Across the full model domain, roughly half of interannual variation in burn scar area is weather-related; the other half is related
to other factors, many related to human activities. For individual Ecoregions that fraction varies considerably, with area burned
in some ecoregions highly dependent on weather and some largely independent. Both weather-related and non-weather-related
interannual variability in wildfire area is included in the model's stochastic catalog of wildfire burn scar areas.
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Figure 4. Relative change in average annual total burn scar area in each model ecoregion for
near-present climate relative to the historical period 1984-2020.

Generating Stochastic Annual Burn Scar Area

For each stochastic year and in each ecoregion, the model assigns an annual total burn

scar area for fires ignited in that ecoregion. The model creates the stochastic realizations of
annual burn scar area by perturbing the historical database recast. The stochastic catalog
generation process was designed to retain ecoregion-ecoregion correlations while introducing
stochastic variation to annual total burn scar area within each ecoregion in each stochastic

year. The stochastic catalog is consistent with the recast of historical area burned and therefore
consistent with near-present climate; furthermore, it contains extreme events where the

total annual area burned in a single ecoregion can be up to double the maximum historical
(1984-2022) area burned. The stochastic catalog of wildfire area reflects a probabilistic view of
the hazard. Common or typical years are very frequent in the catalog and extreme vears are rare.
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b6  Fire Size Distribution

The annual total burn scar area for fires ignited in each ecoregion is further assigned into
individual fires of at least 50 acres (burn scar area), each with its own maximum area to burn,
based upon ecoregion-specific distributions of individual-fire area. These fire area distributions
are based upon historical patterns in each ecoregion and recent trends in sizes of individual fires.

In addition to the general increase in annual total area burned during recent decades, the size
distribution of individual fires of at least 50 acres within each ecoregion also changed, in some
cases dramatically. In general, the size of fires that exceed the 50-acre burn scar threshold have
increased since the 1990s. These changes have been accounted for in the Verisk Wildfire Model
for the United States.

Figure 5 shows the exceedance probability of individual-fire burn scar area in four important
loss-causing ecoregions: Sierra Nevada, Central California Foothills and Coastal Mountains,
Southern Rockies, Klamath Mountains/California North Coast Range. Included in Eigure 5 are
the exceedance probabilities for historical fires, for fires 2004-2020, and for fires in the catalog
(reflecting fire sizes in the near-present climate). Each bar represents the exceedance probability
for fires; for example, the leftmost bar is the probability in the historical data set that a fire burn
scar area is 100 acres or greater in size. The minimum burn scar size in the historical analysis
and the stochastic model is 50 acres and, thus, will have an exceedance probability of 1 (or
100%). In these and all other ecoregions except ecoregion 7 (Central California Valley), the
maximum fire size in the stochastic model exceeds the largest fire experienced in the historical
fire data sets. The ecoregions shown are 5, Sierra Nevada; 6, Central California Foothills and
Coastal Mountains; 21, Southern Rockies; and 78, Klamath Mountains/California High North
Coast Range.
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Figure 5. Exceedance probability of individual-fire burn scar area in four important loss-
causing ecoregions, for historical fires, for 2004-2020 fires, and for fires in the catalog

The ecoregions shown are Sierra Nevada (5); Central California Foothills and Coastal Mountains
(6); Southern Rockies (21); Klamath Mountains/California High North Coast Range (78).

The model's fire-size distributions were developed from an assessment of trends in fire sizes in
the long-term history (all fires 1984-2020), more recent history (all fires 2004-2020), and with
consideration for the size of recent especially large fires (2021-2023) relative to the total area

in each ecoregion. The consideration for the size of especially large recent fires (2021-2023)

is important because of how large individual fires have become in the few years leading up to
2023 (which may limit fuel availability), and because of the extent of areas that were not recently
burned in different ecoregions (which may lead to high fuel loads).

5.7  Ignition Date and Location

Multiple fires can be clustered together by the proximity of their ignition dates and locations, and
this is important to many reinsurance contracts.

lgnition Day Probability

Each stochastic fire has an ignition date (day of the year) based on 365-day years.”

In many locations, wind climatologies are seasonally varying — including the important
downslope wind events such as the Diablo and Santa Ana winds in California. These events are

7 The lack of the 366th day of the year in each leap year was not deemed significant to U.S. wildfire risk analyses.
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explicitly accounted for in the model, making ignition date an important predictor of fire intensity
and overall burn scar area.

Historical and Stochastic Wildfire Ignition Dates

The simulated ignition date for each fire is based on ecoregion-specific analyses of historical
wildfire ignition dates cataloged in the Fire Occurrence Database (FOD) (1992-2020). There are
two aspects to the analyses: (1) day-of-the-year ignition probabilities and (2) same-day wildfire
ignition probabilities.

Verisk scientists established seasonal patterns of ignition dates by analyzing the Eire Occurrence
Database (FOD) to determine the probability of any wildfire igniting on any day of the year. Some
Ecoregions were designated to have date windows that do not have any ignitions (for example,
during the middle of winter in the Canadian Rockies (ecoregion 41), although fires ignited before
these no-ignition windows can still burn into those periods.

Figure 6 shows the modeled stochastic day-of-year ignition probabilities for six ecoregions to
llustrate the range of some specific features of wildfire ignition seasonality.

Ecoregion 4 (Cascades) displays a strong, summer-season distribution of ignition dates

Ecoregion 6 (Central California Foothills and Coastal Mountains), which is south of ecoregion
4, has a significantly extended 'summer’ period of wildfire ignitions

Ecoregion 8 (southern California Mountains) has an even broader 'summer’ wildfire season
with a minimum likelihood of ignition in late February

Ecoregion 25 (High Plains, the ecoregion containing the 2027 Marshall Fire near Boulder,
Colorado) has a strong spring and early summer likelihood of ignitions

Ecoregion 41 (Canadian Rockies) has a narrow summer wildfire season and has no ignitions
during the first 70 days of any year nor the last 21 days of any year

Ecoregion 85 (Southern California/Northern Baja Coast) has peak probability of ignition in the
autumn, with minimal likelihood of ignitions in February. Those autumnal and winter ignitions
in ecoregion 85 have the possibility of occurring during stochastic Santa Ana wind events,
which significantly increases the possibility of significant damage due to large, intense fires.

— . Required Model Documentation for the PRID-2025-00001 34
V= Verisk

©2025 Verisk Analytics


http://www.verisk.com

Probability of Ignition (relative)

Probability of Ignition (relative)

Ecoregion 4

T T T T
0 50 150

T T T
250 350

Ecoregion 25

0 50 150

250 350

Ecoregion 6

T T T T T T I
50 150 250 350

Ecoregion 41

1 T T T T 1
50 150 250 350

Day of Year

Hazard Module Overview

Ecoregion 8

T T T 1
150 250 350

Ecoregion 85

T T T 1
150 250 350

Figure 6. Relative probabilities of a wildfire ignition on an given day of the year (365-day

years) for six sample ecoregions

The integral under each of the curves equals one. The ignition probabilities on day 365 and the
following year's day 1 do not have a discontinuity.

Many wildfires in the Western United States are ignited on the same day as other wildfire(s)
in the same region. The simultaneous ignition of multiple fires within a local area is important
because it may mean that (possibly limited) fire-fighting resources must be divided among
multiple locations. Same-day ignitions are typical for wildfires started when there is extensive
lightning activity across an area or region. Prime examples of this include

the ~250 wildfires ignited on August 16 and 17, 2020, in the LNU® Lightning Complex that
subsequently burned over 300,000 acres in wine country area of northern California;

the many wildfires on August 16 and 17, 2020, in the SCU? Lightning Complex that burned
nearly 400,000 acres and destroyed over 200 buildings southeast of the San Francisco Bay

area,

the CZU Lightning Complex of multiple fires on August 16 and 17, 2020, in the CZU'°
Lightning Complex that destroyed nearly 1,500 buildings in California’'s San Mateo and Santa

Cruz counties;

the SQF'" Complex of two fires on August 19, 2020, that burned near and into Sequoia

National Forest in Central California (Tulare County):

8 LNU refers to the local Sonoma—Lake—Napa Unit (LNU) of the California Department of Forestry and Fire Protection
9 SCU refers to the local Santa Clara Unit (SCU) of the California Department of Forestry and Fire Protection
10 CZU refers to the local San Mateo—Santa Cruz Unit (CZU) of the California Department of Forestry and Fire Protection.

' SQF refers to the Sequoia Lightning Complex.
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the 21 wildfires on August 17, 2020, in northern California (Plums and Butte counties) that
burned over 300,000 acres, destroyed nearly 2,500 buildings, and caused 16 human fatalities
in the North Complex fire;

the extraordinary August Complex composed of 38 wildfires on August 16 and 17, 2020, that
burned over a million acres, killed one firefighter, and destroyed nearly a thousand buildings in
northwestern California (Glenn, Lake, Mendocino, Tenama, Trinity, and Shasta Counties).

The Fire Program Analysis Fire Occurrence Database (FOD) was analyzed to determine historical
probability of same-day ignitions within each ecoregion (see Figure 7). These ecoregion-specific
probabilities were used to assign multiple stochastic fires to a single date within a stochastic
year as appropriate. As is clear from these data, wildfires often co-occur within the same
ecoregion.

The frequency of same-day ignitions of wildfires for each ecoregion is shown in Eigure 7. Within
ecoregion 85 (Southern California/Northern Baja Coast)—the rightmost data—23% of historical
wildfires of 50 acres or larger were ignited on the same day in the same year as another wildfire
and 21% of historical wildfires of 100 acres or larger were ignited on the same day in the same
year as another wildfire. All causes of fire are included, not just lightning-caused wildfires.
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Figure 7. Frequency of same-day ignitions of wildfires of various sizes in each of the model
ecoregions

There are gaps on the horizontal axis because not all numbers between 1 and 85 are used to
label ecoregions within the 13-state model domain.

lgnition Location and Spatial Distribution of Fires

Wildfires can ignite anywhere there is fuel, but determining the likelihood of ignition and the final
growth potential is complex. Adding to the complexity is the variety of ignition sources, both
natural and anthropogenic, and the extent to which the different sources control fire activity.
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Historical fire ignition location data provide a useful starting point, but data collection limitations
and limited time-span of the historical record are significant challenges. For example, while

the record of fires greater than 1,000 acres in an ecoregion can be assumed to be reasonably
complete in terms of frequency, the possible spatial distribution of such fires is far from
complete with only 37 years of Monitoring Trends in Burn Severity (MTBS) data.

Developing Potential Ignition Points

Two sources, the Fire Occurrence Database (FOD) and the Monitoring Trends in Burn Severit
(MTBS) data set, were used to create the ignition points for the stochastic catalog.

To avoid double-counting fires that may be present in both data sets, for these purposes Verisk
sclentists retained only the FOD fires between 50 and 1,000 acres. In addition, to avoid modeling
fire ignitions in urban areas, fires in the FOD with ignition points in locations with more than 50%
impervious surface area were filtered out. The remaining records are combined with MTBS
records to form one data set of historical ignitions.

Because large fires generally occur only where fuel is plentiful and suppression is difficult, and
small fires can happen almost anywhere, two ignition point data sets were created:

a set of ignition points for fires greater than 500 acres (see Figure 8), and
a set of ignition points for fires with areas between 50 and 2,000 acres (see Figure 9).
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Figure 8. Map of ignition points for fires with fire area greater than 500 acres
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Figure 9. Map of ignition points for fires with fire areas between 50 and 2,000 acres

The historical fire ignitions from the combined FOD-MTBS data set present an incomplete
picture of ignition risk due to the limited temporal history of the data and limitations in reporting
in some states. While smoothing can overcome some of these limitations, Verisk scientists
developed an ignition location model which incorporates additional data and creates a more
robust view of ignition risk. Research into the ignition locations of wildfires suggests there is a
significant link between anthropogenic features, such as roads and the wildland-urban interface,
and wildfire activity (Faivre et al,, 2014 and Syphard et al., 2008). Verisk's ignition location model
follows the approach of these researchers.

Gridded ignition counts are predicted by a negative binomial model, based on the following
criteria within each 9-km X 9-km ignition grid cell:

Distance to the nearest road (Tiger Primary and Secondary Road Datasets)

Wildland Urban Interface (WUI) map from United States Forest Service's (USFS) (location

within or near)
Fuel density

Impervious surface area

Using this data, the model predicts the number of ignitions within each grid cell, rounded to the
nearest integer.
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This process is done twice — once using the historical ignitions for fires greater than 500 acres,
and once using the historical ignitions for fires less than 2000 acres.

Within each 9-km X 9-km ignition grid cell, the probability of ignition is assumed to be uniform,
with the only restriction being the presence or absence of fuels. This ensures that the ignition
location has burnable fuel and that the target fire size area may be met. Viable 90-m X 90-m
cells (the resolution of the fine resolution ignition grid) are those that contain burnable fuels, as
classified by the 90-m X 90-m resolution fuels data. Additionally, to ensure the modeled target
fire size will be achieved, the model restricts ignitions to locations where there is sufficient and
contiguous fuel to sustain a fire of the required fire size. The area covered by contiguous fuel
cells determines where an ignition for a fire of a specified size may ignite; this area is defined
where 90-m X 90-m grid fuel cells are connected to others in at least one of its 8 neighboring
cells.

5.8  Defining Stochastic Wildfire Events

Stochastic events in the catalogs are fire clusters. Each cluster includes one or more fires ignited
within 300 miles and 10 days of each other. To create these clusters, the model employs an
algorithm that conducts two-stage, hierarchical clustering. For each event, the minimum target
fire burn scar size is 50 acres.

Spatial clustering

For a given year, a distance matrix (in miles) is calculated for all ignition locations (latitude /
longitude) within that year. Each ignition point is assigned to its own cluster and then the
algorithm proceeds iteratively, at each stage joining the two closest clusters, continuing until
there is a single cluster. At each stage, the distance is recomputed by a dissimilarity update
formula, according to the Ward's minimum variance method. Finally, the algorithm returns
clusters with a diameter <300 miles.

Temporal clustering

Once spatial clustering is complete, a distance matrix (in days) is calculated for all ignition days
within a given 300-mile cluster. Using the same method described above, ignition locations
within a spatial cluster are subdivided into 10-day clusters.

This process results in clusters of fire ignitions occurring within 300 miles and 10 days of each
other. A simplified illustration of this process is presented in Figure 10 and Figure 11.
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a) Ignition locations

b) Spatial clustering

c) Temporal clustering

Figure 10. Ignition point clustering
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Figure 11. Hierarchical clustering (spatial clustering example)

59  Assessing the Stochastic Event Generation

Fire frequency as developed in the 10,000-year run of the model was compared to United States

Forest Service Burn Probability index. While these two data sets represent different aspect of

wildfire risk and are not directly comparable, clear commonalities in areas of high and low fire
risk are apparent.
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6 Local Intensity Overview

For each simulated event, the model calculates the intensity of the hazard at each location within
the affected area.

The local intensity for an individual event in the Verisk Wildfire Model is calculated using a wildfire
spread model and a wildfire smoke hazard model. Losses are assumed to be from fire or from
smoke, but not from both.

The wildfire spread model employs a cellular automata (CA) algorithm and is designed to create
physically realistic wildfire footprints defined by burn scars based on grid cells. This approach
distinguishes it from others that rely on vector-based fire perimeters. The intensity of the fire is
parameterized by the modeled flame lengths in the grid cells that are burned. The model grid is
on an Albers equal area projection domain'? with a resolution (grid cell size) of 90 m X 90 m.

The wildfire smoke hazard model calculates damage from smoke; the smoke hazard is
calculated using a Smoke Potential Index (SPI), an intensity measure that represents the soot
deposition (soot is smoke particles that can deposit on surfaces). SPI depends on amount of fuel
burned, average wind speed during the event, and distance of exposure to the burn scar.

6.1  Local Intensity Input Data

The wildfire spread model creates fire intensity footprints by modeling the spread of fire across
the landscape. Therefore, the model requires spatial information regarding the characteristics

of the landscape that are relevant for fire behavior, such as information regarding wildland and
urban fuels (Surface Fuel), terrain (slope and aspect), population density, urbanicity (as measured
by impervious surface area, ISA), building characteristics, Wind direct and speed, and Fuel
Moisture.

Table 5. Local Intensity Data Inputs

Surface Fuel

Topography

Impervious Surface Area

Measure of Access to Suppression Resources

Oak Ridge National Laboratory's LandScan
Wind

Fuel Moisture

Verisk Drought Index

2 The Albers projection preserves earth surface area in the projected domain
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Surface Fuel: Fire Behavior Fuel Models

The wildfire risk in any given region depends heavily on the type of vegetation present, its density,
the amount of moisture it holds, and the readiness and rapidity with which it burns. Given its
various characteristics as a fuel source, vegetation is a key input to the spread model. Several
factors — the type of vegetation, the condition of the vegetation at any given time, and how dense
It is across a slope or level expanse — all affect how readily a fire will ignite and how and where it
will spread. See section Surface Fuel.

The LANDFIRE fuels data set was modified by Verisk to create 40 burnable fuel categories that
had been determined to be critical for fire spread and intensity, using data from Verisk Firel ine®
product (2019-2022), ESA WorldCover, Homeland Security Infrastructure Program (HSIP) Gold

, OpenStreetMap (OSM), and the 2019 National Agricultural Statistics Service (NASS) Cropland
Dataset. The data set was modified to address the following:

Some land cover types that are identified as burnable in LANDEIRE but that typically do not
support wildfire (e.q., golf courses and some kinds of irrigated agriculture may be categorized
by LANDFIRE as timber, grass or shrubs but rarely, if ever, burn in wildfires) were designated
as unburnable in the modified database.

The designation of some land cover types that may be identified as unburnable in

LANDFIRE but that can carry fire was modified in the database (e.qg., avocado groves may be
categorized by LANDEIRE as unburnable agriculture but have been observed to burn in recent
California wildfires).

Fuel category changes — from burnable to unburnable — were made using data from Verisk
FireLine® because it reflects a more recent view of land use/land cover changes than the
LANDFIRE data set. This allows the model to incorporate areas of recent construction in the
Wildland Urban Interface (WUI).

These fuel categories include sub-types of the greater categories of grass, shrub, mixed grass
and shrub, timber understory, timber litter and slash-blowdown fuels. With each fuel type is
associated a fuel model, which defines a set of parameter values (e.q., typical fuel size and loads
for fine, medium and coarse fuels) that are used in the spread model to calculate fire behavior.
Each fuel category has associated alphanumeric and numeric codes; for example, fuel model
121 corresponds to GS1 which represents 'Low Load, Dry Climate Grass-Shrub'. The modified
fuel category layer includes two additional unburnable categories for golf courses and irrigated
agriculture.

The Urban/Developed category (NB1/97) is considered unburnable within the context of
traditional wildfire spread models that use LANDFIRE as an input and has no associated fuel
model to evaluate spread rate or intensity. However, the primary purpose of the spread model
Is to calculate fire intensity at any location in the model domain that may have exposure; in
particular, the model must be capable of simulating loss-causing wildfire events that spread
from wildland areas into the wildland urban interface Wildland Urban Interface (WUI) and urban
areas, including extreme urban conflagration events that start as wildfires. Therefore, Verisk
scientists developed and implemented a method of calculating fire spread and intensity in
built-up areas as well as wildland areas by including a structure-to-structure fire spread with
fuel category NB1/91 that requires building data as input and that is similar to models of fire
following earthquake.

e . Required Model Documentation for the PRID-2025-00001 43
V= Verisk

©2025 Verisk Analytics


http://www.verisk.com

Local Intensity Overview

Forest Canopy Fuel

The following four categories describe the forest canopy fuel:

Canopy cover
Canopy height
Canopy base height
Canopy bulk density

Forest Canopy Cover

Forest canopy cover describes the percent of a grid cell's area covered by canopy in a stand
of trees. Canopy cover is important in shielding the Surface Fuel from open wind speeds and
in determining the transition of a surface fire to a canopy fire. Canopy cover is provided in
LANDFEIRE as a percent.

Forest Canopy Height
Forest canopy height is the distance from the ground to the top of the canopy. Canopy height

Is iImportant in determining the canopy wind reduction and is provided in LANDFIRE in meters
X10.

Forest Canopy Base Height

Forest canopy base height is the distance from the ground to the base (bottom) of the tree
canopy. Canopy base height is used to determine the intensity/flame height necessary for a
surface fire to transition to a canopy fire and is provided in LANDEIRE in meters X 10.

Forest Canopy Bulk Density

Forest canopy bulk density is the amount of fuel in the canopy by volume. Canopy bulk density is
used to determine the spread rate and intensity of a canopy fire and is provided in LANDFEIRE in
(ka/m®) X100.

Topography

Topography creates variation in localized winds, which in turn affects the direction of fire
spread. Additionally, fires tend to spread at a faster rate when travelling uphill, as heat from the
advancing fire rises, pre-heating fuels uphill.

From the USGS National Elevation Data Set (NED) dataset, Verisk scientists derived slope and
aspect. Slope refers to a site's inclination; aspect is the cardinal direction a slope faces. The
model uses these characteristics as factors in fire behavior.

Impervious Surface Area

The Verisk Wildfire Model for the United States uses impervious surface area data from the
National  and Cover Database (NLCD) 2011 (Xian, et al, 2011), produced by the Multi-Resolution
Land Characteristics (MRLC) consortium. This consortium, a group of U.S. federal agencies,
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generates land cover data at a national scale for environmental, land management, and
modeling applications. Impervious surface area is the percentage of an area covered by material
that does not allow water to percolate through, usually a manufactured structure (e.q., concrete).

Population Density

The spread model uses population density data from the Oak Ridge National Laboratory's
LandScan’ data sets as part of the fire suppression algorithm to provide a probabilistic measure
of access to suppression resources (i.e., the higher the population density the greater the
likelihood of fire suppression). Since wildfires can occur at all times of day, likely suppression
activities for both daytime and nighttime cases are accounted for (e.g., schools and commercial
businesses tend to have low nighttime population levels but high daytime population levels,
whereas residential buildings tend to have low daytime population levels but high nighttime
population levels).

Building Data

The spread model allows buildings to serve as wildfire fuel and for structure-to-structure spread
in Wildland Urban Interface (WUI)/built-up areas where the LANDFIRE fuel category is Urban/
Developed.

Wind Data

Wind speed and direction are key environmental variables that impact wildfire behavior.

For each stochastic fire event ignition, an autoregressive integrated moving average (ARIMA)
time series model simulates wind conditions over multiple time scales (i.e., month, day, hour) for
each 32-km X 32-km grid cell in the National Oceanic and Atmospheric Administration (NOAA)
North American Regional Reanalysis (NARR) data set. The model creates typical winds for a
given NARR cell for a particular month and time of day; wind speed and direction change every
three hours, creating a realistic pattern consistent with historical wind data. The appropriate
model is selected based on the location (grid cell) and month. Once an ARIMA model has been
selected, the same model is used throughout the event to ensure time series consistency, even if
the fire grows into another grid cell or crosses into another month. Thus, the model will represent
the monthly conditions at the time of ignition.

Figure 14 shows how a stochastic fire footprint reflects the changes in wind patterns that occur
during an event. The color scale represents time since ignition (not intensity). Wind was initially
blowing towards the east and the fire spread predominantly in that direction, then the wind
shifted northward around the time indicated by the white contour.
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: Wind Shift
Ignition S

Figure 14. Stochastic fire footprint reflects changes in wind patterns (arrows).
Color scale represents time since ignition (not intensity).

Although the ARIMA model is practical and efficient for creating realistic wind time series with
conditions that do not deviate significantly from typical monthly and diurnal variability in the
NARR wind data, extreme fire behavior is most frequently associated with strong downslope
wind events (e.g., Chinook winds on the eastern slopes of the Rocky Mountains or Santa Ana
winds in southern California). To allow for these events to be represented more explicitly in the
stochastic catalog, the model includes a downslope wind feature for wind time series generation.
Using the observed downslope wind climatology developed by Abatzoglou et al. (2021) as a
guide for location, seasonality, and frequency of events, stochastic fire events that occur in areas
susceptible to downslope winds may be labeled as a "downslope wind event” depending on the
time of year of ignition. In such cases, the wind time series used in the spread model simulation
is drawn from a distribution that is more representative of observed downslope wind events than
is available in the NARR data set because the NARR data set, in general, is too coarse to resolve
the extreme wind speeds often observed in downslope wind systems.

Fuel Moisture

The moisture content of vegetation impacts its likelihood of burning and the intensity with which
it does burn, along with the rate at which the fire spreads through the fuel.

The spread model requires input on the moisture content of dead fuels (of several different size
classes) and live fuels (herbaceous and woody). Each of these different Fuel Moisture content
values responds to different environmental drivers, ranging from hourly changes in weather
conditions to seasonal growth cycles.

Dead fuel is described in terms of the amount of time required for the fuels to come to
equilibrium with its environment, assumed to be a function of the fuel's diameter: 1-hr (fuels <
1/4 inch diameter), 10-hr (1/4 inch to 1-inch diameter), or 100-hr (>3 inches diameter). That Is,
1-hr fuels change with environmental conditions quickly, whereas 100-hr fuels change more
slowly. Dead fuels exposed to rain or high humidity will have a high moisture content, whereas
dead fuels exposed to high winds and low relative humidity will have a low moisture content.

Moisture values in live fuels, however, are primarily controlled by the growing cycle of the
vegetation — moaisture content is typically highest during the spring when fresh foliage is
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developing, remains relatively high through the growing season, and then becomes cured in the
winter months. Because live fuel moisture responds to changes in the soil, and does not respond
quickly to changes in the air, for a stochastic year in which the region of ignition is significantly
drier/wetter than normal, the fuel moisture content values will be lower/higher than normal.

Using the Verisk Drought Index that was developed for each fire ignition event. Verisk scientists

assigned values for the individual fuel moisture contents guided by the moisture scenarios
described in Scott and Burgan (2005). Using this approach, the fuel moisture conditions in which
any given stochastic fire spreads are consistent with the expected large-scale environmental
conditions for that stochastic year.

Figure 15. Pinyon pine and juniper forest in Nevada with low percentage of dead fuels
By Famartin - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?
curid=29072733

Figure 16. Pinyon pine and juniper forest in New Mexico with high percentage of dead trees
By Craig D. Allen, USGS, 2002 https://www.nps.gov/articles/pinyon-juniper-woodlands-
ecosystem-drivers-disturbance-succession.ntm
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6.2  The Fire Spread Algorithm

The simulation method used in the wildfire spread model is a cellular automata (CA) algorithm
that draws from several previous studies of CA models for wildfire spread (i.e., Berjak and
Hearne, 2002; Rui et al., 2018; Jiang et al, 2021). The model uses a discrete rectangular grid on
an Albers equal-area projection of the model domain and employs a rule-based CA technigue
combined with expert knowledge of fire behavior to determine how fire spreads from one grid
cell to another. The spread model is based on a fundamental, but very general, CA method
that allows for flexibility in simulating fire spread through and between wildland and urban
landscapes based on specific models for fire spread in wildland areas; in urban areas; and
where they meet at the United States Forest Service's (USES) wildland-urban interface of the
conterminous United States. This method also enables realistic spatial representation of fire
intensity while achieving computational efficiency.

The essential properties of a CA algorithm are the definition of the state of a cell and a local rule,
or transition function, that updates this state from one time interval to the next. In the wildfire
spread model's CA algorithm, the model domain is divided into square cells of uniform size (90
m), each of which contains a state attribute, S. The state of cell (i, j), at time t changes discretely
with time depending on its own state and that of the eight cells that surround it — commonly
known as the Moore neighborhood of (i, j) — expressed generally in terms of the transition
function, f, as

i =f(si; N)

where Atis the model time step and N refers to the states of each of the eight cells in the
Moore neighborhood of (i, ). Each cell state variable can take one of three values: §;=0
(unignited), S;=1 (active burning), and ;=2 (extinguished).

Figure 17 illustrates the grid configuration for the Moore neighborhood of cell (i, j); when cell (i,
j) Is ignited, the spread rate, R, in each of the eight Moore neighborhood directions is calculated.
The calculation of these directional spread rates for any given cell depends on the wind and

the nature of the fuel in the cell; in particular a different method is used for wildland and urban/
developed fuel types.

The spread rate, R, to the north of the cell is Ry or R; j+
R to the north-east is Ryg or Ry j41

Reistothe east or Riyy |

Rse Is the south-east, or Riyq

and soon...
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Figure 17. The grid configuration for the Moore neighborhood of cell

The model calculates the spread rate in each of the Moore neighborhood directions beginning

in the grid cell that contains the ignition location. The simulation proceeds by evaluating the
transition function to determine changes to the state variable in each of the Moore neighborhood
cells of the ignition cell. When one of those neighborhood cells meets the conditions for

ignition as defined below, its state variable is changed from 0 to 1 to denote active burning. In
this manner, the fire spreads from cell to cell, whereby all cells that are actively burning can
contribute to the ignition of all the neighborhood cells via the transition function.

All events simulated by the model have an associated size (area); the event will continue until the
target size (area) is reached or until no cells are actively burning. An event may burn out before
its target size (area) is reached If it runs out of fuel and/or is suppressed.

Fire Spread in Wildland Areas

The model calculates the spread rate as a function of the Wind and the Surface Fuel in the cell.
In wildland areas, the model employs the spread equations of Rothermel (1972) to determine
when the fire moves from one grid cell to the next. The modes of fire spread include:

Surface
Surface to canopy
Canopy

These modes of spread form a hierarchy — the fire is assumed to start as a surface fire,

and if certain criteria are met, it will transition to a canopy fire. Fuel type and wind speed
determine which burning cells create firebrands. For these cells, firebrands are lofted into the
air, facilitating the ignition of spot fires ahead of the fire front.

Surface Spread

To calculate the rate of surface spread, the model relies on Rothermel's surface spread
equations (Rothermel, 1972), which are based on fuel model inputs, fuel moisture, wind
conditions at midflame height, and terrain.
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Surface to Canopy Spread (Tree Torching)

For each cell ignited by a surface fire, the model calculates fireline intensity'® based on the rate of
spread, fuel consumption, and heat yield. When the fireline intensity reaches a certain threshold
(based on canopy base height for the location), it is possible for the fireline to move vertically to
the tree canopy, engulfing a tree's crown in flames. The model determines when this transition

Is appropriate based on the work of Scott et al. (2001), which links Rothermel's (1972) surface
spread equations and van Wagner's (1977) crown fire transition criteria.

Canopy Spread

Once a fire has moved into the canopy of a single tree, it is possible for the fire to begin
spreading from tree canopy to tree canopy as an active canopy fire (or crown fire). Conditions
such as high wind speeds, a high percent canopy cover, and high crown bulk density promote
the development into an active canopy fire. Crown fires are an important consideration in wildfire
modeling, as they are harder to control — their spread rate is considerably faster than surface
fires and are associated with higher intensity fires.

The spread model calculates fire intensity at each time step to determine if a certain cell will
experience tree torching. If tree torching occurs, the canopy structure of the cell experiencing
tree torching and the surrounding cells are used to determine if the fire will spread as an active
canopy fire. For each cell, the model calculates two different spread rates, one for the surface
and one for the canopy. The spread rate in a cell is either the surface spread or the canopy
spread, whichever is larger.

Fire Spread Iin Urban Areas

In traditional wildfire modeling, "urban/developed” is considered an unburnable fuel category
(Scott and Burgan, 2005). Unfortunately, experience indicates this is not always the case. For
example, the community of Mountain Springs in Colorado Springs, Colorado (appearing as gray
toindicate "urban’, in Figure 18) suffered almost all of the losses from the 2012 Waldo Canyon
fire. Therefore, the model allows fires in areas categorized as unburnable urban/developed

If there are any structures in that cell. If there are structures, the fire spreads based on the
algorithm for fire spread in urban areas. If there are no structures (e.g., a parking lot) then the fire
doesn't spread, and the flame length is zero.

15 Frontal fire intensity (or Byrams fire intensity) was defined by Byram (1959) as the rate of heat output per length of fireline.
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Mountain Springs
Community

Figure 18. 2012 Waldo Canyon fire perimeter and underlying fuels

In the model, wildfire penetration into the built environment is a function of the impervious
surface area and suppression activities.

In cases where suppression is effective, fires will spread up to areas of high impervious surface
area; the fire perimeter stops at the edge of the urban area. Once fire has penetrated the built
environment, however, it may spread using buildings as fuel. While the rate of spread of fire in
wildlands employs the spread equations of Rothermel (1972), the rate of structure-to-structure
spread is estimated following the approach of Hamada (1957), who modeled the spread of fire
following earthquake.

Building are also an important source of embers that may propagate and ignite non-adjacent
cells, starting spot fires that are a critical component for urban fire spread in conjunction with
spread between adjacent structures.

Figure 19 shows an example of a stochastic fire in which embers ignited cells outside of the
original fire perimeter and spread independently, related to the impervious surface area.

Burn scar pixels from
stochastic fire,

o -
- High impervious
surface area

Black pixels have no
impervious surface area

Figure 19. Spot fire ignitions
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Figure 20 shows an example of how a stochastic fire can spread into developed areas and
lead to urban conflagration: this penetration into developed areas depends on several factors,
including the wind speed, impervious surface area, and suppression.

Burn scar pixels from
stochastic fire

High impervious
surface area

»
Black pixels have no
impervious surface area

Figure 20. Urban fire spread

Figure 21. The 2018 Camp Fire in California destroyed the community of Kilcrease Circle in
the town of Paradise, and left the immediate surrounding forest largely untouched.

Source: Keeley, J.E., Syphard, A.D. Twenty-first century California, USA, wildfires: fuel-dominated
vs. wind-dominated fires. fire ecol 15, 24 (2019). https://rdcu.be/dzsal, from a Maxar company
satellite image from Nov 2018.
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Figure 22. Avista Adventist Hospital in Louisville as the Marshall Fire approached on Dec.
30, 2021
Source: Centura Health Avista Adventist Hospital

Ember Generation and Spot Fires

Based on findings in Sardoy et al. (2008), the spread model considers only short distance
firebrands (< 1 km) for the ignition of spot fires. This study found, based mostly on numerical
simulations, that there is a bimodal distribution for firebrand travel distance — one long distance,
and one short distance, and that most fire brands in the long distance category (typically > 1
km) reached a charred state by the time they landed and were not likely to ignite a spot fire.
Alternatively, almost all firebrands in the short distance category landed in a smoldering or
flaming state, and thus were likely to ignite spot fires.

In the spread model, each ignited cell is evaluated in terms of its ability to produce firebrands.
This assessment is based on the presence of a canopy or urban fire, a cell's fuel type and wind
speed. If a determination is made that the cell produces firebrands, the embers are distributed
log-normally, where the mean and standard deviation of the distribution are a function of the
type of plume (buoyancy- or wind-driven), the intensity of the fire, and the open wind speed.
Given that winds are responsible for transporting the fire brands to their landing location, the
model assumes fire brand trajectory is centered around the prevailing wind direction. To account
for local variation in wind and other unknowns, the trajectory is allowed to uniformly vary in a 60-
degree arc around the wind direction (30 degrees on either side).

Due to the shape of the lognormal distribution, many spot fires do not exceed the bounds of
the origin cell, and thus do not impact the advancement of the fire. For a firebrand traveling
beyond its cell of origin, whether or not it ignites the landing cell is made based on available fuel
conditions.

Figure 23 is an example showing spot fires caused by embers contributing to wildfire spread.
Ember ignitions are shown by the red pixels.
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Figure 23. Spot fires caused by embers

lgnition Probability and Suppression

Community-based suppression is an important control in terms of evaluating how far a fire will
be allowed to penetrate into the urban environment. Highly populated areas are more likely to
be prioritized for fire suppression efforts than scarcely populated areas. During a fire, firefighters
try to "hold a line" to fight fires. They create a firebreak (e.g., backburn) or use an existing
environmental structure (e.g., a road) and attempt to stop the fire from spreading beyond that
location. Although it is impossible to model the specific method firefighters will employ in each
situation — such as cutting roads for fire breaks, igniting backfires, dropping fire retardants — the
model simulates where these resources are most likely to deployed.

To model this behavior, the spread model considers population data on a 90-m X 90-m

grid. Since wildfires can occur at all times of day, both daytime and nighttime population are
considered (e.qg., schools and commercial businesses tend to have low nighttime population
levels but high daytime population levels, whereas residential buildings tend to have low daytime
population levels but high nighttime population levels). The model smooths the maximum
daytime and nighttime population values because the scale of suppression activities are likely to
be slightly larger than the 90-m X 90-m grid cell. Based on the smoothed population of a cell,
the model evaluates the likelihood that a fire entering that cell would be suppressed. If a cell is in
a "suppressed’ state, it cannot be ignited.

The probability of a given cell's being "suppressed” is dynamic and may change through the
course of an event. Multiple factors affect suppression probability — fire intensity, wind speed,
and condition of neighboring cells. Suppression is more likely to fail during high intensity events.
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Fire Intensity

Flame length — the distance between the flame tip and the midpoint of the flame depth at the
base of the flame — is commonly used as an observable measure of fire intensity. If there is no
wind and the terrain is flat, flame length and flame height are the same. Under windy conditions

or on a slope, the flame length and height can be different (see Figure 24). The larger the flame
length, the higher probability that a structure will burn.

WINDSPEED

Figure 24. Flame dimensions, showing dependence on wind and slope of the terrain
Source: Rothermel, R. C., 1983.

Figure 25 shows contours for specified flame lengths (in feet) and their corresponding intensities
(in BTU/ft/sec) relative to heat output per area and rate of spread (BTU/ﬁ2 and 'chains'/hr'#
respectively).

FIRE BEHAVIOR
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Figure 25. Fire behavior chart, showing contours of fireline intensity (in BTU/ft/sec) relative

to heat output per unit area and rate of spread for given flame lengths, on log-log scale.
Source: source: Rothermel, R. C., 1983,

14 A'chain’ as a unit of measurement is 66 ft
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Table 6. Typical fire suppression efforts for given flame length and fire intensity

Flame Fireline Interpretation
length intensity
<4 feet <100 BTU/ Hand tools at the head or the flank of the fire
ft/sec
4 -8 feet 100-500 Too intense for hand tools, heavy equipment such as bulldozers,
BTU/ft/sec plows and aircraft
8-11 500-1,000 Torching, crowning and spotting are likely, control efforts at the fire
feet BTU/ft/sec head are likely ineffective
>11 feet >1,000 Torching, crowning and spotting and major fire runs, control efforts
BTU/ft/sec at the fire head are ineffective
Source: Andrews, P L., and Rothermel, R. C., 1981

6.3  Wildfire Smoke Hazard Model

The model calculates damage from smoke as well as from direct flame (fire damage); because
damage from flames is more severe than damage from smoke, losses to buildings are assumed
to be from fire or from smoke, but not from both. The smoke hazard is calculated using a

Smoke Potential Index (SPI), an intensity measure with arbitrary units that represents the soot
deposition (soot is smoke particles that can deposit on surfaces). SPI depends on amount of fuel
burned, average wind speed during the event in different directions, and distance of exposure to
burn scar.

Smoke Production Calculation

As a first step in smoke hazard intensity calculation, the model calculates the total amount
of smoke produced by a fire. Only a small fraction of this total amount of smoke produced
is expected to cause smoke damage because the majority of the smoke disperses in the
atmosphere.

Smoke Potential Index (SPI)

The flame length intensity is calculated within the fire perimeter but soot damage can occur both
inside and outside the fire perimeter. The model uses the assumption that damage-causing soot
outside of a fire's perimeter occurs only within a certain distance of the fire perimeter, and within
the smoke-damage area.
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The measures of intensity of simulated catastrophic events are applied to highly detailed
information about the properties that are exposed to them. Equations called damage functions
are developed and used to compute the level of damage that is expected to occur to buildings of
different types of construction and different occupancies, or usages, as well as to their contents,
and to other lines of business, such as marine, large industrial, and auto.

The damage functions of the Verisk Wildfire Model for the United States include:
Shape of the building damage function based on claims data from recent fires.
Separate damage function for appurtenant structures.
Contents damage function based on claims data.
Time element damage function based on industry loss (data) contribution by coverage.

Compliance with building code updates to California after year built 1997 that are based on
the hazard zonation and in all other states & some specific counties based on the adopted
codes.

Claims-based damage function for smoke sub-peril.

The damage estimation component of the Verisk Wildfire Model for the United States translates
wildfire intensity into expected damage, which includes property damage and business
interruption losses for residential properties, manufactured homes (mobile homes), commercial
and industrial assets, and automobiles caused by fire and smoke. Smoke damage both within
and beyond fire perimeters is modeled explicitly.

7.1 Building Classification and Resistance to Wildfire Damage

The building components and features that affect an exposure's vulnerability to wildfire can be
divided into two broad categories of attributes:

Primary: Characteristics such as the occupancy, construction type (material), height, and age
of the bullding

Secondary: Characteristics that define the building envelope and the building's environs - roof
cover type, wall siding material, glass type used in windows, roof attachment features, and
the surrounding landscaping.

Wildfires ignite structures in three ways:
Ember accumulation
Direct contact with flames
Radiant heat

Of these modes of ignition, ember accumulation is a major source of ignitions of homes and
other properties. Embers (see Figure 26) can travel with the wind as far as a kilometer, resulting
in fire ignition well beyond the main burning area.
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Figure 26. Fire and embers, 2017 Thomas fire, Los Padres National Forest, California
Source; https://www.flickr.com/photos/usforestservice/albums/72157688491050272

Damage from flames always begins with penetration of the building envelope. The flamsmmability
of a structure's exterior surfaces or attached structures, such as the roof, wall-siding, deck, and
fence, are critical factors in determining a structure's vulnerability to fire. Historically, damage by
flames show a strong binary pattern. Homes that suffer damage are generally a complete loss —
they burn to the ground — whereas others survive completely intact. These surviving structures,
however, are often found to be contaminated by smoke and soot, especially those within a fire
perimeter. Therefore, wildfire damage within burn scar is either minimal (smoke/soot damage) or
complete (total loss), with very little in between. Smoke can travel far, and the model calculates
smoke damage up to a certain distance outside of a fire's perimeter.

Effect of Building Height on Peril

The number of stories in what are classed as low-rise, mid-rise, high-rise and tall buildings
depends on the occupancy class of the building, shown in Table 7.

Table 7. Height classes per occupancy type

Occupancy Low-Rise Mid-Rise High-Rise Tall
Single/ 1 2 3 4 & Above
Multi-Family
Residential
Commercial / 1t03 4to07 8to 25 26 & Above
Industrial
& Services
Height classes do not apply to infrastructure (200 series construction
codes) and large industrial (400 series occupancy) type exposures

In general, a 1 to 3 story rise building is considered the most vulnerable since it tends to
accumulate more combustible debris, such as pine needles, dead leaves, etc., and embers are
more likely to accumulate on them. Ember ignition is the major causal factor of houses being
destroyed by wildfires.
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Figure 27. Typical California ranch

Long overnangs (with or without soffits) also referred to as wide eaves, are observed in wildfire
events (as well as lab experiments) to increase the vulnerability of T-story buildings (Figure 28
shows a ranch house with a ~2-ft overhang without a soffit). Wide eaves such as these create

a cave-like volume that traps any hot air from burning wood chip mulch, low bushes and other
vegetation around homes that have been ignited by embers. In Figure 29, a 1-story building is on
fire after the fire had "jJumped" onto the roof. Multi story (4+ story) buildings have much smaller
probability of having cave-like eaves because the eaves are higher above the ground.

Figure 28. An open eave with no soffit
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Figure 29. A Spring Valley house is consumed by flames in the Ranch fire in Lake County,
Californiain 2018

Residential Buildings

The predominant construction type for residential buildings in the United States is wood frame
construction (see Figure 30). As illustrated in Figure 31, masonry construction is also widely
used in certain regions, though considerably less than wood frame. Other construction types are
negligible.

Common roof covers for residential buildings include asphalt shingles, clay and concrete (RC)
tiles, slate, and wood shingles.

Exterior wall siding materials for residential buildings primarily include vinyl, metal, wood, fiber,
stucco, and masonry.

Model Domain - Residential Lines

B Wood [ Masonry BRC M Steel

Figure 30. Residential construction distribution in the model domain
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California - Residential Lines

B Wood EMasonry BRC M Steel

Colorado - Residential Lines

B Wood M Masonry BRC M Steel

Oklahoma - Residential Lines

B Wood M Masonry ERC M Steel

Washington - Residential Lines

B Wood @ Masonry ERC M Steel

Figure 31. Residential construction distribution in California, Colorado, Oklahoma, and
Washington

Residential houses are typically built using light-frame construction following commonly
accepted engineering practices.
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Manufactured (mobile) homes

In the Verisk Wildfire Model for the United States, manufactured homes are addressed as a
separate construction classification. Although the design and construction of single family
homes are based on local or state building codes, the design and construction of manufactured
homes is regulated and governed federally by the U.S. Department of Housing and Urban
Development (HUD), pursuant to the 1974 National Manufactured Housing and Construction
Safety Standards Act.

The HUD code defines a manufactured home as a structure that is transportable in one or more
sections, and is at least 8 body feet wide or 40 body feet long during transport. When onsite, it

s at least 320 square feet, built on a permanent chassis, and designed to be used as a dwelling
with or without a permanent foundation, when connected to utilities (24 CFR 3280.2 and 24 CFR
3286.5). This class does not include modular homes. Unlike manufactured homes, modular
homes are designed and constructed according to the local building codes. Verisk includes
modular homes in the classification for single family homes.

A manufactured home is less expensive than a light-frame construction single family house, and
its value depreciates upon leaving the factory. In comparison with standard home construction,
mobile homeowners typically have less control over building materials, landscaping, fire
insurance or other safeguards against wildfire. Building materials of manufactured homes are
generally of lower quality than constructed dwellings. Many manufactured homes use asphalt
shingles or TPO (thermoplastic polyolefin) as the roof cover. Both materials are flammable,
making manufactured homes vulnerable to wildfire.

Commercial and Industrial Buildings

Commercial and industrial exposures include a greater variety in construction than residential
properties. The commercial/industrial occupancy class in the 13 western states of the model

domain consists almost half as wood construction, with the remainder consisting of masonry,
concrete (RC) and steel constructions.

Model Domain - Commercial Lines

B Wood [EMasonry ERC M Steel

Figure 32. Commercial construction distribution in the Western United States
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Although wood frame buildings are in both residential and non-residential occupancies, non-
residential wood frame construction is different from residential dwellings in several ways —
design and construction methodology, construction materials, and surrounding environments.

Wood frame construction is common for low- to mid-rise non-residential buildings, such as
hotels, religious buildings, stores, and multi-unit apartment buildings. Rather than conventional
light-frame construction, building codes often require engineered methods for the design and
construction of these buildings. Engineered methods include allowable stress design (ASD) and
load resistance factor design (LRFD).

The materials used as roof cover for non-residential buildings are significantly different from
those used in residential construction. Due to the large size of a non-residential building and the
functionality requirements of the roof, these structures typically have a flat roof with built-up
cover as opposed to a pitched roof. One advantage of a flat roof is that it provides great space
for mechanical equipment, such as cooling or ventilation systems, solar panels, etc.

For non-residential buildings, it is commmonly preferred to use low-maintenance and long-lasting
cladding materials such as stone, stucco, brick veneer, fiber cement, glass, metal, mortar, and
thermal insulation composite systems. Most of these materials are not flammable.

Throughout most of the United States, non-residential buildings usually are separated from
residential structures depending on local zoning requirements. Building codes for these
structures require large parking lots. Typically places of assembly, such as a church or theater,
need to provide one parking space for every b seats or every 40 square feet of interior space.

Appurtenant Structures

It is possible to have damage only to the appurtenant structures and no damage to the main
building or structure (rock tunnel with toll booth as an example of such case). In these cases,
there will be no content damage or business interruption losses because those depend on there
being a main building damage ratio.

Region and Age Variability

Newer buildings may be less vulnerable from wildfires than older buildings because of state,
county or regional building codes.

Several building codes including the International Wild-Urban Interface Code (from 2003 to
2018), the California Building Code and California Fire Code (2007 & 2010) and the Standard for
Reducing Structure Ignition Hazards from Wildland Fire (NFPA 1144) affect newer buildings in
the 13-state model domain.

In California, local, state and federal responsibility area zones were mapped to moderate, high
and very high hazard levels as shown in figure below. California Building Code construction class
A B, & C requirements were mapped to the hazard levels. For example, the vulnerability for same
flame length intensity in the very high hazard zone is lower than in the high hazard zone because
of the higher level of code requirements in the very high hazard zone.
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Hazard Zone Mapping
Very High
High

Moderate

Figure 33. Moderate, high, and very high hazard levels for California

The hazard mapping presented in Figure 33 is used only for understanding building
characteristics due to building codes, and does not relate to the representation of the hazard in
the model.

California, Colorado, Montana, Nevada and Utah have adopted state-wide wildfire code
requirements for new construction, and some counties have adopted codes. If both the state
and county have region-specific vulnerability, the model applies the county-specific vulnerability
first. For example, the state of Colorado as well as Boulder County in Colorado have state-wide
wildfire code requirements; the model applies the specific vulnerability for Boulder County first.
The following specific counties have adopted wildfire codes (listed by state):

Pima, AZ
Boulder, CO
Pueblo, CO
Boise, ID
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Douglas, NV
Washoe, NV
Bernalillo, NM
McCurtain, OK
Austin, TX
Chelan, WA
Douglas, WA
Kittitas, WA
Yakima, WA
Teton, WY

Unknown Characteristics

Based on the building replacement values of known occupancies and constructions in Verisk's
Industry Exposure Database, the weights of unknown types of indices are pre-calculated.

In general, unknown height is similar to the vulnerability for low-rise residential, and commercial
Is more likely to be in the mid-rise height class. Furtnermore, the construction of steel and
concrete (RC) type indicate taller buildings in the unknown weight calculation mix.

7.2 Secondary Risk Characteristics for Wildfire

Secondary risk characteristics (SRC) are features of a building and its environment that
significantly impact the building's vulnerability to damage during an event. The SRCs are
important contributing factors to losses sustained by residential, commmercial, and industrial
properties.

For any feature and option from a Secondary Risk Characteristic that is viewed as worse
(making building more vulnerable) than the base damage functions, a higher relativity score is
assigned to that building and vice versa for any viewed as making a building less vulnerable.

Safer from Wildfires

'Safer from Wildfires" in California was created by an interagency partnership between Insurance
Commissioner Ricardo Lara and the emergency response and readiness agencies in Governor
Gavin Newsom's administration. There are ten steps outlined in the program and under the
requlation effective October, 2022, associated with this program, insurers are required to give
discounts for every action take under the Safer for Wildfire steps. The 10 steps are:

Class-A fire rated roof — Most roofs qualify including asphalt shingles, concrete, brick,

or masonry tiles, and metal shingles or sheets. Wood shake shingles are not Class A fire-
resistant rated. The Office of the State Fire Marshal maintains a list of tested and approved
materials.
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5 foot ember resistant zone, including fencing — Removing greenery and replacing wood
chips with stone or decomposed granite 5 feet around your home prevents fire from getting
a foot in the door. Replacing wood fencing connecting to your home with metal is critical
because it can act like a candle wick leading fire straight to your home.

Ember- and fire-resistant vents — Installing 1/16 to 1/8 inch noncombustible, corrosion-
resistant metal mesh screens over exterior vents can keep wind-blown embers out of your
house.

Non-combustible 6 inches at the bottom of exterior walls — Having a minimum of 6
vertical inches measured from the ground up and from any attached horizontal surface like a
deck can stop embers from accumulating and igniting your wealls. Noncombustible materials
include brick, stone, fiber-cement siding or concrete.

Enclosed eaves — Installing soffits under your eaves can prevent heat and embers from
getting trapped and igniting. When enclosing eaves, non-combustible or ignition resistant
materials are recommended.

Upgraded windows — Multi-paned windows are more resistant to breaking during a wildfire,
which helps keep flames from entering. Multi-paned glass or added shutters all qualify.

Cleared vegetation, weeds and debris from under decks — Noncombustible materials like
concrete, gravel, or bare soil are permitted.

Removal of combustible sheds and other outbuildings to at least a distance of 30 feet —
These include sheds, gazebos, accessory dwelling units (ADUs), open covered structures with
a solid roof, dog houses and playhouses.

Defensible space compliance — following state and local laws requiring defensible space
including trimming trees and removal of brush and debris from yard. See CAL FIRE's
defensible space page and your local city or county for detalls.

Being safer together — Safer from Wildfires recognizes two community-wide programs,
Firewise USA and Fire Risk Reduction Communities as small as 8 dwelling units or as

big as 2,500 can create an action plan and start being safer together. Firewise USA is a
nationally recognized program with proven results, sponsored by the National Fire Prevention
Association.

The Verisk Wildfire Model for the United States secondary risk characteristics can be used to
understand the relative impacts of these steps on your book of business, when the features are
coded into the exposure data. Following is a comparison of the Safer from Wildfires features and
the SRC features available in the Verisk Wildfire Model for the United States:

Class-A fire-rated roof: The Safer from Wildfires program requires a Class-A fire-rated roof,
which includes materials like asphalt shingles, concrete, brick, masonry tiles, and metal. Wood
shake shingles do not qualify. The Verisk Wildfire Model also recognizes the importance of
roofing materials in wildfire vulnerability but goes further by considering a broad range of fire-
resistivity in different roof materials rather than a strict classification and accounts for 11
different type of roof material. In addition, the Verisk model accounts for roof geometry, roof
shape, roof attached structures such as chimneys, A/C unit, skylights, parapet walls, dormer.

The 5-foot ember-resistant zone: for the 5-foot ember-resistant zone, Safer from Wildfires
recommends removing vegetation and replacing combustible materials near the home, as well
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as replacing wood fencing connected to the house with metal to prevent fire from spreading.
The Verisk model considers only the section of fencing attached to the building and evaluates
different fencing materials and their impact on wildfire risk.

Ember- and fire-resistant vents: The Safer from Wildfires specifies the use of 1/16 to 1/8-inch
noncombustible metal mesh screens to prevent ember entry. The Verisk model, accounts for
roof vents with 1/8-inch or smaller mesh as wildfire-resistant but does not explicitly include the
1/76-inch mesh size.

Non-combustible 6 inches at the bottom of exterior walls: The Safer from Wildfires
recommends at least six vertical inches of fire-resistant material like brick, stone, fiber-cement
siding, or concrete. While the Verisk model considers types of wall siding, there is no explicit
characteristic for the 6in bottom clearance.

Enclosed eaves: The Safer from Wildfires advises installing soffits made of non-combustible or
ignition-resistant materials to prevent embers from accumulating. The Verisk model accounts
for this by incorporating roof overhang (eaves) and soffit design into its damage function.

Upgraded windows: The Safer from Wildfires highlights multi-paned glass and shutters as
effective ways to reduce wildfire risk. The Verisk model similarly considers glass type and
skylights, noting that skylights can create additional vulnerabilities by allowing embers to enter.

Cleared vegetation, weeds, and debris from under decks: The Safer from Wildfires
recommends using noncombustible materials like gravel, concrete, or bare soil. The Verisk
model accounts for this under defensible space Zone 1, recommending that no vegetation be
within five feet of the building.

Removal of combustible sheds and other outbuildings: The Safer from Wildfires mandates
that structures like sheds, accessory dwelling units (ADU)s, and gazebos be placed at least 30
feet away from the home. The Verisk model considers external fuel storage, such as sheds and
propane tanks, but focuses on those within five feet of the building.

Defensible space compliance: the Safer from Wildfires requires adherence to state and local
laws for vegetation management. The Verisk model incorporates defensible space zones (1-3)
based on FEMA's definitions, considering their impact on wildfire spread. The FEMA defensible
zones share the same fundamental objectives as CAL FIRE's defensible space quidelines:
reducing wildfire risk by creating buffer zones around structures, managing vegetation by
reducing density and minimizing flammable materials near buildings, and enhancing structural
protection by clearing debris from roofs and gutters, keeping flamsnmable objects away from
structures, and using fire-resistant materials whenever possible.

Community-wide mitigation efforts: The Safer from Wildfires promotes Firewise USA™ and
Fire Risk Reduction Communities, where groups of homes work together to reduce fire risk.
The Verisk model assumes that properties in Firewise USA™ communities have a defensible
space equivalent to 100 feet, unless a greater defensible space is specified. Then the specified
vulnerability will be used for loss calculations.

In addition to the above mentioned SRC features, the Verisk Wildfire Model for the United States
accounts for wall siding, building shape and gutters.
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7.3 Wildfire Mitigation Credits

Verisk leverages publications and studies on the effectiveness of wildfire mitigation measures
from these sources, combined with in-house structural engineering expertise and bullding
damage observations from historical wildfires, to establish an expert opinion regarding the
impact of wildfire mitigation measures on the vulnerability of structures exposed to wildfire risk.

The academic sources upon which the Verisk Research team bases its fundamental
understanding of wildfire risk mitigations—particularly with respect to defensible space and
Firewise Community participation—include the Forest Stewards Guild, the National Institute

of Standards and Technology (NIST), and the Institute of Catastrophic Loss Reduction (ICLR).
The wildfire tearm employ data from many sources, both public and private, including data from
sources such as the Insurance Institute for Business and Home Safety (IBHS), and insurance
claims data in the building of the model. Staff have also participated in damage surveys to better
understand wildfire risk.

Building components and features that affect an exposure's vulnerability to wildfire can be
divided into two broad categories of attributes — primary and secondary. Primary characteristics
that define the exposure include occupancy, construction type (material), height and age of
the building. The building's location and age play a crucial role in determining its susceptibility
to wildfire risks implicitly implying mitigation activities. Structures erected in areas designated
as high-risk zones according to building codes tend to have more stringent design standards,
making them better equipped to withstand wildfires compared to similar buildings located in
low-risk regions. Secondary characteristics are those that define the building envelope and
the buildings environs — roof cover type, siding material, glass type used in windows, roof
attachment features, and the surrounding landscaping. In total six secondary features are
included in the model, including two specific to wildfire (defensible space and Firewise USA™
communities).

In the Verisk Wildfire Model for the United States, exposures input by the user to the model
without specified features assume default vulnerabilities. That is to say, an average building

for the exposure area is defined in the model. This default vulnerability is based on Verisk's
understanding of the built landscape. All building/exposure characteristic options further defined
by the user augments this understanding of the default vulnerability, making it more or less
damageable in the face of the named peril. Consider a user input of an exposure with unknown
roof characteristics. The model the assumes average roof characteristics. However, specifying
shingle types can reduce or increase the vulnerability of the structure in the model and result

in different loss estimates for a defined insurance policy. Adjustments are made to the mean
damage ratio — a metric which defines the average damage to a structure across the intensity of
the peril (in the case of wildfire, this intensity measure is flame length).

The Verisk Wildfire Model for the United States uses actuarially sound methods, data

and assumptions in the estimation of wildfire losses. The relationship among the wildfire
characteristics are logical. Loss costs decrease as vulnerability features strength increase, other
factors held constant. For example, switching from a wood shingle roof to an asphalt roof is
going to decrease a loss cost.
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Age, construction, year built, and number of stories can have up to 20% impact on losses
depending on, but not limited to, the combination of characteristics, coverage, and location.
Defensible space can have up to a 40% impact, Roof types can have a up to 30% impact and
Windows can have up to 10% impact on losses depending on, but not limited to, the combination
of characteristics, coverage, location, and glass type.

The Verisk Wildfire Model for the United States account for commmunity-level and property-level
mitigation efforts as explained below:

Firewise USA Community-Level Mitigation Efforts

The Firewise USA program is a National Fire Protection Association (NFPA) program, co-
sponsored by the USDA Forest Service, U.S. Department of the Interior, and the National
Association of State Foresters. Among numerous requirements, recognition as a Firewise
community requires a community wildfire risk assessment, which provides residents with
critical wildfire information about their community. Community members are responsible for
maintaining wildfire safety standards in common areas, but they are also educated about fuel
management best practices that they can implement on and around their own homes.

The Verisk default behavior in the Verisk Wildfire Model for the United States is to assume the
exposure is not part of a Firewise USA Community. If the exposure is designated as being a
Firewise USA community the model assumes both that the defensible space must be at least
100ft (or greater if input by the user), assumes the structure is in good condition, and yields

a reduction to the mean damage ratio for the structure. The Firewise designation includes
evaluating:

Vegetation
Topography
Wind severity
History of wildfires
Building materials: roofing material choices, soffit vent, siding, skirting
- Attachments: decking and decking material choices, windows, roof/gutter debris, gutter types
Within 0-5ft of structure: materials and vegetation
Within 5-30ft of structure: vegetation and condition of surrounding surfaces
Within 30-100ft (200ft where applicable): vegetation and condition of surrounding surfaces
Common areas: proximity to wildland and other fuel sources, management plans therefore,

Property-Level Mitigation Efforts
Defensible Space

Defensible space is the area between the structure and an oncoming wildfire, where landscaping
has been managed to alter or cut off the fire's path, with the intent of increasing the structure's
probability of survival.

Verisk categorizes defensible space into 3 zones. Enacting defensible space around an exposure
in the Verisk Wildfire Model for the United States yields reductions to the mean damage ratio in
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all cases — implying that the default is anticipated to have no defensible space. Reductions in
vulnerability are given by zonal region, which are defined in accordance with FEMA definitions.

Verisk Defensible Space - Zone 1

Zone 1 is defined as the distance of 0 to 30 feet from the structure. Ground-level fuels—dead
plants, grass, weeds (vegetation), dry leaves, twigs, pine needles, and combustible debris—
should be removed within 0 to 5 feet, and significantly controlled from 5 to 30 feet from a
structure. If present, this type of material should also be removed from the roof and rain gutters.
Zone 1 should be free of all firewood piles, construction material, propane tanks, or other
combustible materials. If a fence is attached to the building, the section of the fence within Zone
1 must be constructed of non-flammable material.

Verisk Defensible Space - Zone 2

Zone 2 is the distance of 30 to 100 feet from the structure. Fire-resistant plants and materials
should be used in this zone as much as possible. Species of trees/shrubs should be slow-
growing and deciduous (e.g. maple, poplar), and materials such as rock, brick, gravel, and stone
are ideal for patios, decks, and walkways. Vertical and horizontal space between vegetation
should also be maintained to reduce the potential spread of fire.

Verisk Defensible Space - Zone 3

Verisk defines Zone 3 as 100 to 200 feet from the structure. Fuel management in Zone 3 is only
needed when a high wildfire hazard level exists. A high hazard level may be due to the presence
of continuous forest vegetation or special topography where fuels are not sufficiently reduced in
Zone 2. Special topography conditions include a steep slope, narrow draw, or small canyons — all
features that increase the ignition potential of a structure.

7.4 Fire and Smoke Damage Functions

Damage functions are the core of the damage estimation component of the model. Wildfire
damage functions estimate the damage to buildings using flame length as the intensity
parameter to produce a mean damage ratio (MDR) for any given intensity. Flame length is
defined as the distance between the tip of the flame and the ground, midway in the zone of
active combustion (see Figure 34).
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Figure 34. Firefighter making firebreaks during the Black Forest fire, Colorado
Source: http://www.af. mil/News/Photos/igphoto/2000041046/, modified by Verisk

Fire Damage Functions — Buildings

The wildfire damage function for buildings (see Figure 35) provides an estimation of mean
damage at given flame length. This is a claims-driven damage function. The curve shown is
for a typical 2-story, single-family residential building with wooden construction. In claims data,
structures start to experience losses at short flame lengths (< 1 foot). Typically, low damage
Is expected in this range as short flames can be suppressed by household hand tools such

as shovels and garden hoses. When the flame length is in the mid-range (2 to 6 feet), heavy
equipment and professional firefighters are needed to suppress the fire. In this situation, the
efficacy of fire suppression is uncertain, as it is highly dependent on the weather conditions
and fire suppression resources. If the flame length exceeds 8 feet, the fire is often deemed not
suppressible. The damage quickly increases to near complete loss (> 756%) at flame lengths
above 8 feet.

MDR

0 5 10 15 20 25 30 35 40 45
Flame Length (ft)

Figure 35. Mean Damage Ratio (MDR) for buildings vs flame length

The estimated mean damage ratio includes minor damages, such as melting and exterior
damage, to severe damage, such as structural damage due to heat and fire reaching interior of
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the building. Depending on the flame length, the probability of each type of damage varies. Figure
36 shows the damage ratio distribution for a 5% mean damage ratio (MDR). There is a spike at
total damage on the right and minor damages represented on the left,

Probability

Figure 36. Damage distribution for a 5% MDR

Fire Damage Functions — Contents

Contents inside a building start to be damaged after a fire burns through the building envelope.
Given this correlation, contents damage is modeled as a function of building damage.

Smoke Damage Functions — Buildings and Contents

Smoke damage can occur due to deposition of soot and ash on the exterior and interior of the
building as well as on contents. The loss Is incurred due to the associated cleaning or repainting
costs for building surfaces and for replacement of contents damaged beyond repair.

Large Industrial Facllities

Large industrial facilities are treated the same as industrial occupancies. They do not have
further dependency on construction class. They are expected to have the same vulnerability as
steel or concrete construction industrial occupancy with low-rise height class.

Infrastructure

Most of the infrastructure type exposure is assigned a modifier to relativity based on Verisk's
expert judgement since it is Not possible to validate each of these assets. In general, the
vulnerability of non-combustible and non-heat damageable assets is lower, and the vulnerability
of chemically active or easily heat damageable assets is higher.
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Time Element Losses, Additional Living Expenses (ALE) and
Business Interruption (BI)

In addition to direct economic losses from physical damage to buildings and contents, loss of
building functionality due to excessive damage, lack of access, or safety concerns can lead to
further monetary losses. Monetary losses that can arise from loss of use are also known as
Time Element losses. For residential properties, these losses may be incurred for temporary
lodging or relocation expenses and are referred to as Additional Living Expenses (ALE). For other
lines of business, such as commercial and industrial, monetary losses incurred from loss of use
are referred to as Business Interruption (BI) losses.

Combined Building and Contents Damage Functions for Time Element Loss

The time element loss is calculated as a function of the number of days required to repair or
rebuild the structure or replace damaged contents. The number of days required to bring a
property back to the usable condition is a function of the extent of both building and contents
damage. However, the degree to which both of these types of damage contribute to the overall
duration of downtime (measured in days) depends on the severity of the damage. For example,
when damage to the building is relatively minor, the majority of downtime is related to re-
supplying the contents so that the building regains functionality. However, when building damage
Is more severe, the time required for extensive repair or reconstruction typically outweighs the
time required to replace the damaged contents.

Additional Living Expenses

The Verisk additional living expenses (ALE) damage functions take into account the time that
people may need to stay in a hotel or elsewhere while their home is repaired. It also takes into
consideration any necessary time taken off work due to their inabllity to get to their place of
employment, or necessary time spent with contractors.

Business Interruption

Downtime, or the number of days before a business can return to full operation, is the primary
parameter for estimating business interruption (Bl) losses. The methodology used for estimating
Bl losses, as illustrated schematically in Eigure 37, uses an event tree approach, incorporating
the latest research and findings from an extensive analysis of claims data (including but not
limited to wildfire).

For each damage state, a probabllity is assigned to two possible outcomes:
+ Continued operations
Cessation of operations at the location

If operations cannot continue at the location, a probability is assigned to whether the company
will relocate. These probabilities vary by occupancy. For example, while relocation is feasible for
an office, it is not for a hotel. Thus, the two occupancies will take different paths to recovery, and
hence will have different downtimes in the event of business interruption.
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Figure 37. Hypothetical event tree of Bl estimation for an office and a hotel

Downtime is calculated for each stage of the damage assessment and recovery process. The
first stage Is the time before repairs can get underway (pre-repair). Damage must be assessed,
repair costs negotiated with contractors, and the building permit obtained. The next stage is the
repair time. Some businesses choose to relocate rather than wait for repairs, but relocation takes
time as well. Once repairs are completed, revenues may not resume immediately at the pre-
disaster level; it may take some time to regain market share, or to rebuild a labor force that may
have been dislocated.

In the Verisk model, the estimated number of days needed to restore the business to full
operation depends on the level of damage sustained and occupancy class.

Buildings with significant architectural complexity will take longer to repair. Warehouses can be
quite large, but repairs are likely to take place quickly because of their architectural simplicity.
Hotels are not only typically larger than offices, but can take more time to repair due to the more
complex and higher quality of interior finishing.

Some types of businesses, such as hospitals, are more resilient than others and may be able
to restart operations before repairs are complete, or they may have had disaster management
plans in place, allowing them to relocate some operations quickly. For other businesses, such
as hotels, location Is so critical that relocation is not an option. Since many parameters (such
as building size, complexity, and business resiliency) that are critical to determining business
interruption are generally not available for input into the model, occupancy class is used as a
proxy to measure these parameters.

Occupancy is also used to estimate the probability that there may be business interruption

at a dependent building within the damage footprint—such as the supplier of a necessary
manufacturing input—that will exacerbate Bl losses at the principal building. Estimation of the
impact of damage to the dependent building(s) on the principal building requires knowledge

of the location and the degree of interdependence between dependent and principal buildings.
Since this level of detailed information is generally not available, logical assumptions are made
to estimate the impact of the dependent building(s) on the principal building's downtime. The
methodology for estimating Bl losses relies in part on loss experience data and in part on expert
judgment in the face of limited available exposure information.

Required Model Documentation for the PRID-2025-00001 (4

V= Verisk:

©2025 Verisk Analytics


http://www.verisk.com

Damage Estimation Overview

Business Interruption for Various Occupancy Classes

The functional relationship between building damage and loss of use is based upon published

construction and restoration data along with expert engineering judgment. Eigure 38 shows
the relationship between repair time, or downtime, and the geometric mean of building and
contents damage, for a variety of occupancy classes. Note that the model includes business

interruption damage functions for all occupancy types in Touchstone. Touchstone Re users can
run business interruption losses for occupancies that belong to the commercial and industrial
classes.

Downtime (days)

Single Family Homes
Hotels

Apartment/Condo

General Commercial

Retail Trade
—— Offices
Hospitals

General Industrial
Emergency Services

Universities

Primary/Secondary Schools

Building Damage

Figure 38. Business interruption damage functions for different occupancy classes
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8 Financial Module Overview

Policy terms and conditions are applied to estimate insured losses to create probability
distribution of loss. This probability distribution of losses, called an exceedance probability curve,
reveals the probability that any given level of loss will be surpassed in a given time period—for
example, in the coming year. (The probabilities can also be expressed in terms of return periods.
For example, the loss associated with a return period of 20 years has only a 5% chance of being
exceeded this year, or in one year out of 20, on average.) Loss probabilities can be provided at
any geographic resolution—for the entire insurance industry, for a particular portfolio of buildings,
or for an individual property.

The financial components of catastrophe models are developed by statisticians and actuaries
with the expertise to analyze the impact of highly complex policy terms for portfolios that may
span multiple regions and be exposed to multiple perils.

Verisk's Next Generation Financial Module, first released in Touchstone 2023, introduced a

fully probabilistic, transparent, and flexible framework designed to improve how catastrophe

risk is financially quantified. The financial module is applied across all perils and regions,
including wildfire, to provide more realistic and granular financial loss estimates. This financial
modeling architecture enables Verisk model users to more accurately model the losses for single
locations, better account for dependencies and correlations in loss accumulation, and more
realistically capture the application of complex policy terms.

As a part of the development and release of Verisk's Next Generation Financial Module,
considerable information was provided to the market and the public about different financial
concepts and how those are handled in the platform.

Next Generation Financial Modeling for Residential and Small Business | ines describes

how financial modeling is done in Touchstone for residential and small business lines. This
includes information about loss distributions across perils and coverage types in the financial
module framework.

Modeling Fundamentals: Understanding Uncertainty describes how uncertainty is accounted
for in the Verisk financial module of Touchstone. Primary uncertainty are data quality, data
completeness, and incomplete scientific understanding of the natural phenomenon being
modeled. Secondary uncertainty is the uncertainty associated with the damage and loss
estimation should a given event occur.

Next Generation Modeling: Loss Accumulation describes how loss accumulation works in
the Verisk financial module and its relation to uncertainty. Modeling the dependencies in loss
accumulation is a component of Verisk's overall strategy of propagating and reporting &ll
modeled uncertainty, due to the central role that loss accumulation plays in a catastrophe
modeling platform.

The remaining articles are theoretical documents exploring fast and accurate algorithms for
adding together probability distributions for many correlated exposures.

Bivariate Copula Trees for Gross Loss Aggregation with Positively Dependent Risks

Geospatial Metrics for Insurance Risk Concentration and Diversification

Direct and Hierarchical Models for Aggregating Spatially Dependent Catastrophe Risks

Required Model Documentation for the PRID-2025-00001 (b

V= Verisk:

©2025 Verisk Analytics


https://www.verisk.com/blog/next-generation-financial-modeling-for-residential-and-small-business-lines/
https://www.verisk.com/blog/Modeling-Fundamentals--Understanding-Uncertainty/
https://www.verisk.com/blog/next-generation-modeling-loss-accumulation/
https://www.mdpi.com/2227-9091/10/8/144
https://www.soa.org/globalassets/assets/files/resources/essays-monographs/2019-erm-symposium/mono-2019-erm-zvezdov.pdf
https://www.mdpi.com/2227-9091/7/2/54
http://www.verisk.com

Financial Module Overview

+  Split-Atom Convolution for Probabilistic Aggregation of Catastrophe Losses

Using Intraclass Correlation Coefficients to Quantify Spatial Variability of Catastrophe Model

8.1 Insured Loss Calculation

In this component of the Verisk Wildfire Model for the United States, ground-up damage is
translated into financial loss. Insured losses are calculated by applying policy conditions to the
total damage estimates resulting from the damage estimation module. Policy conditions may
include franchise deductibles, coverage limits, loss triggers and risk-specific reinsurance terms.

8.2  Aggregating Losses Probabillistically

Post-disaster surveys and actual claims data reveal an inherent variabllity in wildfire damage.
Loss estimates generated by the Verisk Wildfire Model for the United States capture this
variability by accounting for both primary and secondary uncertainty. Primary uncertainty derives
from the uncertainty associated with the stochastic event generation process, while secondary
uncertainty describes the uncertainty in damage resulting from a given event. This secondary
uncertainty captures the uncertainty in the local intensity estimation and in vulnerability of
exposures.

The uncertainty in the local intensity of the hazard can be attributed to unmodeled phenomena,
local site factors, as well as the spatial resolution of calculated intensity. The inherent
randomness in building ignition constitutes the primary source of building damage uncertainty.
Although a building is as strong as its weakest characteristic against fire ignition, given the same
level of modeled intensity, a building will likely survive if ignition sources do not accumulate
around the vulnerable area.

The model calculates damage using damage functions that provide, for a given event intensity,
a mean damage ratio (MDR) and a probability distribution around the mean that captures the
variability in damage. For the Verisk Wildfire Model for the United States, a distribution combined
with empirically derived probabilities of 0% and 100% damage levels is used to model the
uncertainty around the mean damage.

The damage functions are used to produce, for each event, a distribution of ground-up losses
by location and coverage. Limits, deductibles and reinsurance are applied in the financial module
to the ground-up loss distribution to produce gross and net loss estimates. Note that insured
losses can accumulate even If the mean damage ratio is below the deductible, because some
structures are damaged above the mean damage ratio and the deductible. The distributions

are applicable to the analysis of a single exposure and in this case usually have a high degree of
uncertainty. The individual distributions are combined to obtain the portfolio distribution, where
the uncertainty is lower.

The financial model aggregates losses probabilistically at various levels. Ground-up, coverage-
level damage distributions are typically aggregated parametrically. However, after location
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and policy terms are applied, the distributions cannot be represented parametrically. Further
aggregation is achieved statistically using numerical algorithms.

The financial module within Verisk's software applications supports a wide variety of location,
policy and reinsurance conditions. Location terms can include limits and deductibles by site or
by coverage. Supported policy terms include blanket and excess layers, minimum and maximum
deductibles, and sublimits. Reinsurance terms include facultative certificates and various types
of risk-specific and aggregate treaties with occurrence and aggregate limits.

8.3  Demand Surge

Evidence from major catastrophic events in past years suggests that after a major event,
increased demand for materials and services to repair and rebuild damaged property can put
pressure on prices, resulting in temporary inflation. This phenomenon is often referred to as
demand surge and it results in increased losses to insurers.

Demand surge is the sudden, and usually temporary, increase in labor and materials costs
driven by high demand following a catastrophe that has caused widespread property damage.
An affected area might also experience increased demand for services and resources (e.g.,
transportation, equipment, and storage). The greater and more widespread the damage, the
greater the resulting demand surge and insured losses.

Scarce resources can also increase the time required to repair or rebuild. Such delays may affect
business interruption losses and living expenses. Infrastructure damage, delayed building-permit
processes, and a shortage of available building inspectors also increase time-element loss.
These factors can result in insured losses that exceed expectations for a particular event and
portfolio.

Verisk has related the amount of demand surge in a particular event to the amount of total
industry-wide insurable losses from the event. The factor is dependent on coverage. A table
incorporated into the software contains the corresponding demand surge factors, by coverage,
for different levels of industry-wide losses. For a given event, the demand surge factors by
coverage are applied to the corresponding ground-up losses, based on the industry-wide loss
for that event. Policy conditions are then applied probabilistically. The sum of these losses by
coverage yields the total event loss with demand surge included.

Demand surge effects are expected to be small when included in a wildfire analysis. Very few
individual stochastic fire events meet the default threshhold for adding demand surge, and the
number does not greatly increase when temporal aggregation is considered. Simply put, wildfires
are more of a frequency issue than a severity issue.

Demand surge does not have built-in regional differences regarding the threshhold or factors
applied to losses. There will be regional effects of demand surge because it occurs where the
catastrophes occur. For example, a desert region would be expected to experience less effect
from demand surge applied to wildfires than a WUI region would because the events where
there is ample fuel will be larger and more likely to meet or exceed the threshhold.

— . Required Model Documentation for the PRID-2025-00001 78
V= Verisk

©2025 Verisk Analytics


http://www.verisk.com

9 Model Validation

Verisk catastrophe models are validated. Every component is verified against data obtained from
historical events. In addition, when all the components come together, the final model output

is expected to be consistent with basic physical expectations of the underlying hazard, and
unbiased when tested against both historical and real-time information.

9. Historical Event Losses

Estimating the losses for the Historical Event Sets involved estimating the burn scar sizes for
these events more accurately than available through available data sets, and then estimating the
historical losses.

Estimating Burn Scars of Historical Wildfire Events

To evaluate modeled losses, Verisk scientists estimated the burn scar areas for historical fires
by processing data from the Monitoring Trends in Burn Severity (MTBS) data set for most of the
events; for more recent events, Verisk scientists used satellite images to create additional burn
scars following the MTBS methodology.

To do this, Verisk scientists computed the difference between the pre and post fire normalized
burn ratio (ANBR) computed from the Landsat satellite data near infrared (NIR) and Shortwave
Infrared (SWIR) bands.

Areas with dNBR less than 0.1 were classified as unburned (or burned in prior wildfire events)
and removed from the identified extent of the burn scar. Areas with a dNBR above 0.1 were
classified as burned and included in the burn scar.

Since dNBR is a measure of fire severity, and strictly a measure of intensity, Verisk used an
algorithm to study the burned areas and fire intensity. The algorithm looks at what kind of fuel
were in each spot and how fast the wind was blowing during the fire.

This intensity of the fire (i.e. flame length) is used to calculate the modeled losses referred to in
the following sections.

Verisk scientists used Geospatial Multi-Agency Coordination (GeoMAC) fire perimeters to verify
the extent and location of burn scars (see Figure 39).
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Figure 39. Landsat 8 images of the 2015 Butte fire (California) burn scar captured on
January 12, 2016, and estimated burn scar area.

Creating Target Losses for the Historical Event Set

To evaluate modeled industry-level losses for fires in the Historical Event Set, reported losses
must be adjusted to 2022 values. Capturing the change in exposure into previously unoccupied
wildland gets less reliable with older events. Therefore:

for events between the 1991 Oakland Hills fire to the 2015 Valley fire, adjusted losses are 70%
of the total replacement values within burn scar in Verisk Industry Exposure Database (IED)
vintage 2022 (approximately based on the ratio of total loss reported to total replacement
value for recent wildfire loss events);

for events that occurred more recently (2017-2022), reported losses are adjusted to account
for inflation, shifts in median home values, and changes in the number of housing units by
adjusting Verisk Property Claim Services (PCS) values.

Comparison of Modeled Losses to the Target Losses

The broad assumption of 70%, can lead to a very high losses compared to reported PCS losses.
Figure 40 shows the modeled losses vs target losses for the events in the Historical Event

Set. In Eigure 40, the grey horizontal lines indicate the range of reported losses from different
sources. The blue circles on the grey lines indicate the trended loss values on horizontal axis, and
modeled loss on vertical axis on a log-log scale. Overall, there is a good agreement between the
targets and modeled losses, however, the modeled losses are typically lower than target. The
modeled losses represent damage to residential, mobile home, commercial, and automobile
lines of business, as well as coverages of building, contents and business interruption or time
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element losses. They do not include demand surge, nor extra expenses such as debris removal,
additional living expenses (ALE), and guaranteed replacement cost (GRC). These factors can
contribute a significant portion of the reported loss (up to 20%) and can vary significantly from
event to event based on location, frequency of events and magnitude. (For the Nuns fire, PCS did
not report loss data separately but included it with the Tubbs fire; therefore, the Nuns and Tubbs
fires are combined in the comparison.)
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Figure 40. Verisk modeled loss validated using reported ranges of losses for the 31

historical events

Loss Comparison by Lines of Business (LOB)

Figure 41 shows loss breakdown by lines of business for reported and modeled losses; data
were provided by Verisk Property Claim Services (PCS) for historical events that occurred after

1999

Modeled

Auto

= Personal = Commercial

= Personal

PCS

= Commercial

Auto

Figure 41. Comparison of loss breakdown by lines of business between reported and Verisk

modeled losses
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Loss Comparison by Coverage

Loss contribution by coverage is only available in some of the claims data studied (~40%). The
available claims loss data by coverage compares well with the model's total historical loss by
coverage as shown in the Figure 42,

Model Claims

8 b

= CovAB = CovC = CovD = CovAB = CovC = CovD

Figure 42. Loss comparison by coverage

Loss Validation by Company

Figure 43 shows that claims data and modeled losses show reasonable agreement — the data
shown are for recent historical events using exposures and claims data from four companies. It
should be noted that the model losses exclude demand surge, whereas demand surge may be
included in the company claims.

+ CompanyA
= CompanyB
4 CompanyC
* CompanyD

MODEL LOSS

CLAIM LOSS

Figure 43. Company loss comparison

Smoke Contribution to Loss

Smoke loss was calculated for the 31 historical events using the smoke intensity and smoke
damage functions described in the Damage Estimation Chapter. The smoke contribution varies
from negligible to up to 17% based on direction of wind towards or away from exposure; the
average smoke contribution was about 2.5%, however, a reported loss from PCS does not
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typically provide the breakdown between fire and smoke for an event. When reported, the range
of smoke contribution to total loss in claims from companies varied similarly from 1% to 13%.

Benchmarking Stochastic Losses

Verisk researchers benchmarked the predicted frequency of losses resulting from simulated
wildfires in the stochastic catalog. Verisk researchers validate the reasonableness of modeled
frequencies against actual loss experience; however, due to the unique characteristics of
wildfires, historical loss data are often incomplete and unreliable. Furthermore, the change in
exposure can be dramatic. Figure 44 shows an example of dramatic exposure change within the
perimeter of an older fire. This unnamed wildfire'® likely did not cause any significant damage to
buildings and other properties. The exposure changed dramatically between May 1993 and May
2022.

Figure 44. Satellite images from May 1993 (top) and May 2022 (bottom) and the perimeter
of an unnamed 1992 wildfire in Northern California, showing dramatic exposure change
within the fire perimeter.

California

California had two consecutive high loss years in 2017 and 2018 with events such as Tubbs,
Atlas, Nuns and Camp. Figure 45 illustrates the model EP curve in light blue color in California
for both aggregate and occurrance losses. The horizontal red and dark blue lines show trended
reported losses from Verisk PCS for Tubbs, Atlas, and Nuns fires in 2017 and Camp fire in 2018).

15 fire id: ca3885512126919920820 in MTBS database
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Figure 45. California exceedance probability curves for occurrence and aggregate modeled
losses for 10,000-year stochastic catalog compared with 2017 and 2018 values (Tubbs,
Atlas and Nuns fires in 2017, and Camp fire in 2018).

Considering the large area and regional variations within the state of California, the view of risk

is often assessed individually in northern and southern California. This geographical split is
indicated for clarity in Eigure 46, which illustrates EP curves with near-climate losses in light blue
and historical climate losses in dark blue, shown separately for Northern California and Southern
California.
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Figure 46. Aggregate and occurrence losses in northern and southern California from the
model, and the model with no climate trending (historical climate)
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10 Accounting for Climate Change
Overview

Verisk's atmospheric peril models are designed to estimate risk of loss to insured properties in
the near-present climate. \Where significant shifts in the distribution of a hazard have occurred
over the course of the instrumental record, and where the shifts are deemed highly likely to
persist given the latest understanding of the processes by which climate change interacts with
that hazard, Verisk scientists represent such changes in the modeled event sets. Generally,
model development teams continuously evaluate models against new data as they become
avallable, as well as in light of ongoing developments in science. The focus on near-present
climate is thus a natural part of Verisk's ongoing processes of model vetting and update scoping.
Representation of any changes in the underlying climatological distributions of modeled hazards
that may have occurred is also an extension of the basic catastrophe risk modeling principle that
risk estimates should be locally unbiased.

In the case of wildfire, the state of scientific understanding strongly supports the explanation
that climatic trends in weather variables are key to trends in the wildfire peril in the Western
United States (e.g., Abatzoglou & Williams, 2016, Westerling, 2016; Williams & Abatzoglou, 2016;
McKenzie & Littell, 2017; Wehner et al,, 2017; Littell, 2018; Littell et al, 2018; Williams et al,, 2019;
Goss et al, 2020; Keeley et al,, 2021; Dong et al., 2022, Jones et al,, 2022; Shi & Touge, 2022,
2023; Abatzoglou et al., 2023). Over the course of the development of the hazard model for the
Wildfire Model for the United States, Verisk scientists paid particular attention to recent, ongoing
trends in temperature extremes (especially summer daily maximum temperature), precipitation,
atmospheric vapor pressure deficit (Vapor Pressure Deficit (VPD) especially during the fire
seasons), and the Self-calibrating Palmer Drought Severity Index (scPDSI). Identification of the
driving weather variables for wildfire, and their trends, was carried out independently for each
ecoregion in the 13-state model domain over the period of record.

10.1 Historical Trends

Verisk scientists extensively researched the historical trends associated with wildfire activity
and the weather variables related to wildfire activity in the 13-state model domain, through
internal analyses and scientific literature review.'® Three aspects of the relationship between
annual wildfire area and weather/climate were found to be critical to the representation of
wildfire responses to climate change in the model domain: (1) the geographical variation of the
impact that weather has on the interannual variation in wildfire (2) the increase or decrease in
total annual wildfire burn scar area over the past several decades in many ecoregions of the
model domain, and (3) the trends, over the past several decades, in weather variables in some
ecoregions in which the weather variables have an important relationship with burn scar area.

16 e.q., Abatzoglou & Williams, 2016; Westerling, 2016; Williams & Abatzoglou, 2016; McKenzie & Littell, 2017; Wehner et al., 2017;
Littell, 2018; Littell et al., 2018; Williams et al., 2019; Jones et al., 2022; Shi & Touge, 2022, 2023
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Wildfire Annual Total Burn Scar Area

The trends in annual total wildfire burn scar area varied geographically, in both strength and
direction, during the historical period 1984-2022'" according to the Theil-Sen estimator (see
Table 8). Within the model domain, 19 ecoregions had statistically highly significant positive
trends in annual total burn scar area during the 39-year historical period in the Verisk Historical
Event Set. Several of those positive trends were strong and in Ecoregions with significant
insurable exposure, including the Sierra Nevada (ecoregion 5) and Klamath Mountains/California
High North Coast Range (ecoregion 78) in northern California. Two of the ecoregions had
statistically highly significant negative trends in annual total burn scar area: the Central California
Valley (ecoregion 7) in California and South Central Plains (ecoregion 35) in eastern Texas and
southeastern Oklahoma. Five other ecoregions had moderately significant increasing trends.
Positive trends (slopes) indicate increasing wildfire burn scar area over time since 1984,

Trends were estimated using the Theil-Sen estimator (the median of the slopes of all the lines
through all the pairs of points in the time series), which is relatively insensitive to outliers. On the
other hand, wildfire outliers (on the large side) have potential to lead to catastrophic losses and
are therefore often the most important events in the Western United States.

Table 8. Trends in total annual burn scar area over the historical period 1984-2022, by

ecoregion
Ecoregion number and name Slope
1 Coast Range n.d.
2 Puget Lowland n.d.
3 Willamette Valley n.d.
4 Cascades positive
5 Sierra Nevada positive
6 Central California Foothills and Coastal Mountains n.d.
7 Central California Valley negative
8 Southern California Mountains n.d.
9 Eastern Cascade Slopes and Foothills positive
10 Columbia Plateau positive
11 Blue Mountains positive
12 Snake River Plain n.d.
13 Central Basin and Range n.d.
14 Mojave Basin and Range n.d.
15 Northern Rockies positive
16 Idaho Batholith positive
17 Middle Rockies positive
18 Wyoming Basin n.d.

7 The annual total wildfire burn scar area in the Verisk Historical Event Set is for burn scars of at least 50 acres.
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Ecoregion number and name Slope
19 Wasatch and Uinta Mountains positive
20 Colorado Plateaus n.d.
21 Southern Rockies positive
22 Arizona/New Mexico Plateau positive
23 Arizona/New Mexico Mountains positive
24 Chihuahuan Deserts n.d.
25 High Plains positive
26 Southwestern Tablelands positive
27 Central Great Plains positive
29 Cross Timbers positive
30 Edwards Plateau positive
31 Southern Texas Plains positive
32 Texas Blackland Prairies positive
33 East Central Texas Plains n.d.
34 Western Gulf Coastal Plain n.d.
35 South Central Plains negative
36 Ouachita Mountains n.d.
40 Central Irregular Plains positive
41 Canadian Rockies n.d.
42 Northwestern Glaciated Plains n.d.
43 Northwestern Great Plains positive
77 North Cascades positive
78 Klamath Mtns/California High North Coast Range positive
79 Madrean Archipelago positive
80 Northern Basin and Range n.d.
81 Sonoran Basin and Range n.d.
86 Southern California/Northern Baja Coast n.d.

Vapor pressure deficit

Several previous studies (e.g., Willliams et al, 2019) and Verisk research indicate that Vapor
Pressure Deficit (VPD)'® averaged over several periods (e.g., June-August, May-October, March-

October, etc.) is strongly positively related to wildfire area in many regions of the model domain,
especially in forested ecosystems with strong seasonal patterns in weather (e.q., cool winters
and warm summers) and wildfire activity (e.qg., wildfire activity largely confined to the warm

18 Vapor pressure deficit (VPD) is the difference between saturation vapor pressure (Saturation Vapor Pressure (SVP): the amount
of water vapor the atmosphere can hold when it is water-saturated) and actual vapor pressure (AVP the actual vapor pressure or
actual amount of water vapor in the atmosphere) (VPD = SVP — AVP). Saturation vapor pressure is strongly (exponentially) and

positively related to air temperature. When VPD is zero, the relative humidity is 100%)
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summer periods). This is important to the Verisk Wildfire Model for the United States because
VPD has been increasing significantly during the past 50 years in several model ecoregions, and
many of the forests in the model domain are sensitive to summer VPD. These recent trends in
VPD indicate that wildfire area may increase to the extent that VPD continues to increase in the
near-present climate. See section Seasonal VVapor Pressure Deficit (VPD) variables.

Summer daily maximum air temperature

Trend analyses by Verisk scientists indicated summer (June to August) average daily maximum
air temperature (T gy iNcreased in all 45 model ecoregions during the period 1970-2021.

The summer Ty INcreased by more than 0.5 °C over that period in all but four ecoregions,
exceeding 1.0 °Cin nearly all cases and approaching 2.0 °C in many ecoregions. In four
ecoregions Tmax INcreased by less than 0.5 °C over that period, including the two ecoregions with
the majority of insurable exposure in Southern California: the Southern California Mountains and
the Southern California/Northern Baja Coast ecoregions.

Verisk scientists determined that T,y IS @ssociated with burned area in five of the ecoregions,
and built those ecoregion-specific wildfire-weather models with summer 5, @S an input
variable. In all five cases, total annual wildfire burn scar area was positively related to summer
Trax. This implies that wildfire area might increase if summer T4y IS INCreasing as a component
of climate change, and vice versa. In four of these wildfire-weather model cases, however, the
net effect of climate change on wildfire area was found to depend on multiple factors, not just
summer Tmax and therefore summer Tax Was one of multiple weather variable inputs to the
ecoregion-specific wildfire-weather models.

Precipitation

Precipitation during the previous year can be important to wildfire area in water-limited
ecosystems by enhancing plant growth and therefore increasing the amount of potential

fuel Verisk scientists found that in seven ecoregions, wildfire area was positively related to

the previous year's total precipitation. This implies that over multi-year periods wildfire area
might increase if total annual ecoregion precipitation is increasing as a component of climate
change, and vice versa. In all seven of these ecoregions, however, the previous year's total annual
precipitation was found to be one of multiple weather variables associated with wildfire area; in
these ecosystems, the net effect of climate change depends on multiple factors, not just total
annual precipitation.

Precipitation during the current summer (June to August) — as contrasted with total annual
precipitation during the previous year — was associated with wildfire extent in six ecoregions. In
all six, wildfire area was negatively related to summer precipitation during that same year. This
negative relationship between summer precipitation and wildfire area was earlier observed by
Littell et al. (2009) and is most easily understood as a consequence of the amount of water in
fuel during the summer fire season. Fuel with higher water content is more difficult to ignite, and
if ignited, burns with less intensity than a comparable but drier fuel.
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Self-Calibrating Palmer Drought Severity Index

Wildfire area in the Western United States has been related to drought indices in previously
published research (e.qg., Littell et al., 2009), and Verisk research found the same for recent
decades in the model domain. Summer (June-August) Self-calibrating Palmer Drought
Severity Index (scPDSI) is associated with wildfire extent in four of the model's ecoregions. In
all four ecoregions, a smaller (more negative) value of the summer sc-PDSI (which indicates
dryness'?) was positively related to total annual wildfire burn scar area. This indicates the
positive effect of dry summer fuel on wildfire activity in these ecoregions, probably related

to high summer VPD and/or relatively limited summer precipitation, although the sc-PDSI
integrates multiple ecosystem water balance components (precipitation, runoff, recharge,
potential evapotranspiration, actual evapotranspiration, and others) over a longer time period
(ie., the index involves longer term lags in relative moisture conditions than just immediate
summer values). The index is also related to multi-decadal history of water balance in different
ecosystems/ecoregions rather than being a simple physical measurement of a contemporary
state variable such as air temperature (see Welles et al, 2004). See section Seasonal Self-
calibrating Palmer Drought Severity Index (scPDSI) Variables.

10.2 Model and Catalog Development

Catalog development is explained in Event Generation Overview section of the model
documentation. For detailed information refer to this section in the Hazard Module.

10.3 Model Validation

The Verisk Wildfire Model for the United States was built to reflect the wildfire peril within

the context of the near-present climate; that is, the model reflects present risk rather than
summarizing history because wildfire history in the western United States does not reflect
present risk, in part because of ongoing climatic changes. As such, stochastic model outcomes
cannot be directly validated by comparisons to historical data because of the strong trends in
both weather and wildfire activity in the historical period that may continue through the near-
present climate period. That is, the modeled peril reflects the expected climatologies across the
model domain during the 2025-2029 period, and these are expected to differ from those in the
(recent) historical period.

Correlations in Annual Total Burn Scar Area between Ecoregions

Interannual variation in total annual burn scar area is positively correlated between some
ecoregions, negatively correlated between others, and uncorrelated for still others. Positive
correlations in total annual burn scar area can be expected among ecoregions that (1) are in

19 For the self-calibrating Palmer Drought Severity Index, more positive values indicate more moisture and more negative values
indicate more drought
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close geographic proximity and therefore experience similar weather, (2) have similar vegetation
and ecological characteristics, and (3) have similar wildfire-weather relationships. In ecoregions
with positive correlations in interannual variation in annual total burn scar areas, interannual
varigtion in insured losses might also be correlated. This can be an important consideration in
diversification of risk.

Figure 47 shows the correlations between interannual variation in each ecoregions’ annual total
burn scar areas in the Verisk historical (1984-2022) wildfire database (n = 39 historical years)
and that same Verisk historical area data stochastically perturbed (n = 100,000 stochastic years).
Figure 48 shows the correlations between ecoregions’ annual total burn scar areas in the same
Verisk historical wildfire database (n = 39 historical years) and in the stochastic catalog of annual
total burn scar area reflective of the near-present climate (n = 100,000 stochastic years).

In Eigure 47 and Figure 48, positive correlations in interannual variation in wildfire area between
ecoregions are in blue and negative correlations are in red, according to the scale shown to the
right of each panel; also, the narrower an ellipse, the stronger the positive or negative correlation.
The columns and rows reflect each ecoregion in the model domain arranged by ecoregion
number. Consecutively numbered ecoregions tend to be near each other, and therefore clusters
In the figures sometimes correspond to geographic clustering, but that is not always so.

The modeling process of stochastically perturbing the ecoregion-based annual total burn

scar areas reflective of the near-present climate principally retained the historical correlations
among ecoregions — as illustrated by a comparison of the left and right panels in Figure 48. This
comparison shows that the process used by Verisk to stochastically perturb historical wildfire
area data retains geographic correlations in the underlying input data.

It is key to note that some of the historical correlation strengths (positive and negative)
weakened to a small degree in the 100,000-year catalog of burn scar area in the Verisk Wildfire
Model for the United States as a result of recasting the historical fire data into the context of
the near-present climate. This was expected, and due at least in large part to differences in
projected climatic changes between ecoregions (i.e., differences in climatic change trends in
different regions) and to differences in the wildfire-weather relationships in different ecoregions.
Nonetheless, the groupings of positive correlations, negative correlations, and lack of correlation
between ecoregions in the 39-year historical database was broadly retained in the near-present
climate-based recast of historical burn scar data and the resulting 100,000-year stochastic
catalog of total annual burn scar areas.
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Figure 47. Correlations between ecoregions' annual total burn scar areas in the Verisk
historical (1984—-2022) wildfire database (n = 39 historical years), and in the historical area
data stochastically perturbed (n = 100,000 stochastic years)
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Details are the same as previous figure. The left panels in the two figures are identical for uniform comparison
purposes.

Figure 48. Correlations between ecoregions' annual total burn scar areas in the Verisk
historical (1984—-2022) wildfire database (n = 39 historical years), and in the stochastic
catalog of annual total burn scar area in the Verisk Wildfire Model for the United States
reflecting the near-present climate (n = 100,000 stochastic years)

Summary

There are strong historical relationships between climate and wildfire burn scar area in many
parts of the Western United States. Moreover, there is good understanding of the mechanisms
involved that are associated with both amount of fuel available to burn during a year or season
and its relative flammability. The latter issue is related to fuel moisture content, which in turn is
related to seasonal weather. There also have been strong trends in some climate variables that
are known to affect wildfire activity (i.e., burn scar area) in parts of the Western United States.

In other parts of the Western United States, however, there are only weak relationships between
climate and wildfire burn scar area and/or the climate variables related to wildfire area have
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not changed or changed only marginally in recent decades. That is, both relationships between
climate and wildfire activity, and recent trends in climate variables that affect wildfire activity, are
geographically disparate. As a result, changes in expected effects of the near-present climate
on wildfire area relative to historical activity vary significantly as represented by the Verisk model
across the 13-state domain (Figure 49).

Many of the ecoregions experiencing increased annual burn scar area in response to the near-
present climate contain high-elevation forested ecosystems that are sensitive to dry summers
during which fuel becomes especially flammable. Some areas with decreases in modeled
wildfire activity relative to the historical record are water-limited arid/desert areas growing

less potential fuel under the current unprecedented drying. Ecoregions with small changes

in annual total burn scar area from the historical record either contain ecosystems that are
relatively insensitive to climate or have fire activity driven mainly by climate variables that have
not significantly changed in recent decades, or both.

Change in burn scar area

rea
‘Small change (decrease or increase))

Figure 49. Relative change in average annual total burn scar area in each model ecoregion
for the near-present climate relative to the historical period 1984-2020.
The near-present climate in the context of this model is ~2025-2029.
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1117 User Input

As mentioned in the Verisk Catastrophe Modeling Framework, exposure data and policy
conditions are information provided by the insurers. These details must be included in the input
for each location to enable analysis at that location.

Table 9. Inputs by Insurers

Data Input Description
Exposure Information about the property, replacement value and physical characteristics, is
Data provided by the insurer
Policy Policy terms and conditions are provided by the insurers
Conditions
UNICEDE®

UNICEDE is managed and maintained by Verisk Analytics and is a globally accepted industry
data format to standardize insurance data exchange. The format is used by primary insurers,
reinsurers, and reinsurance intermediaries with Touchstone, Touchstone Re, and CATRADER
applications. For more information visit https://unicede.air-worldwide.corm/.

Exposure Data

Verisk's risk modeling platform, Touchstone, requires insurers to provide the primary risk
characteristics which are described below as part of their exposure data.

1. Location of the Building: A complete address of the building including number, street name,
city, ZIP code and state results in more accurate estimation of the loss.

2. Age of the Building: The year of construction, which can influence the building's vulnerability
to hazards due to changes in building codes and construction practices over time.

3. Height of the Building: The number of stories or overall height, which can impact the
building's exposure to different types of hazards (e.g., wind load for tall buildings in
hurricanes).

4. Construction Type: The materials and methods used in constructing the building (e.g., wood
frame, masonry, steel), which affect its resilience to various hazards.

5. Occupancy Type: The use of the building (e.g., residential, commercial, industrial), which can
influence both the vulnerability and potential economic impact of a hazard event.

These characteristics are critical in determining the building's vulnerability to different types of
natural disasters and are key inputs in catastrophe modeling for risk assessment.
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Secondary risk characteristics (SRCs) are optional inputs. Touchstone assumes unknown input
for all SRCs unless the insurer choses the correct input for each category.

ZIP Codes in the United States

Accurate model output is highly dependent on the correct location information. ZIP code is

one of the supported geographical resolutions by Touchstone. During analysis in Touchstone if
Disaggregation is selected, the aggregate County, City or Zip codes exposures are automatically
disaggregated to a 1-km grid, based on industry exposure weights, by line of business.

The Verisk ZIP Code update is a biennial update. Touchstone 2024 includes a ZIP All database
vintage April 2022. Touchstone 2025 includes a ZIP All database with vintage April 2024.

Lines of Business

At Verisk, exposures are organized into Lines of Business (LOBs) which are specific to country
and peril type. The following lines of business are included in the Verisk Wildfire Model for the
United States:

Residential: Building, contents, and time
Commercial/Industrial: Building, contents, and time
Mobile home: Building, contents, and time
Automobile

Industrial

When exporting loss results users must map user-specified lines of business (LOBs) in the data
to Touchstone-supported industry LOBs.

Policy Conditions

Insured losses are calculated by applying policy conditions to the total damage estimates
resulting from the damage estimation module. Policy conditions may include franchise
deductibles, coverage limits, loss triggers, and risk-specific reinsurance terms.

Estimates of physical damage to buildings and contents are translated into estimates of
monetary loss. These, in turn, are translated into insured losses by applying insurance policy
conditions to the total damage estimates. Probabilities are assigned to each level of loss.

The model's damage functions are developed by highly trained structural engineers. They
incorporate published research, the results of laboratory testing, the findings from on-site
damage surveys, as well as detailed Claims Data provided by insurance companies.

Policy conditions are inputs from the insurer and captures information about the policy terms
and conditions. Touchstone will treat locations with unknown (blank) deductibles as if they have
a zero dollar deductible.
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11.2  Analysis Options in Touchstone

The analysis options available in Touchstone are provided in Form G-8: Wildfire Catastrophe
Model Settings and Input.

11.3 List of Common Model Outputs

Table 10. List of Common Model Outputs

Output Description
Average Average annual losses (AAL) by line of business, by coverage, by geographical area
Annual Loss or by user defined category. "Average loss” is the long-term average loss, on either
an aggregate or occurrence basis. It is calculated by using either the aggregate total
losses or maximum occurrence losses for all the simulated years and then dividing
by the number of years in the simulation.
Exceedance Exceedance probability represents the probability that a certain level of loss or
" hazard event will be exceeded in a given time period, usually one year. It is often
Probability ) : ,
expressed as a percentage or a fraction. The EP curve is a ranking of event losses
(EP) Curve and is used to quantify a complete risk profile. In general:
Exceedance probability of the nth highest loss = n/ [years in simulation]
Example: An Average Exceedance Probability (AEP) of 1% for a ST million loss
indicates there is a 1% chance that a loss of ST million or more will occur in any
given year.
Loss Return The return period is the inverse of the annual probability of occurrence of an event.
Period For example, a return period of 100 years means that there is a 1% chance (1/100)
of an event of that magnitude or greater occurring in any given year.
Loss Return Period = 1/(Exceedance Probability)
Example 1: A 100-year wildfire means there is a 1% probability in any given year that
a wildfire of certain magnitude will occur.
Example 2: in terms of insurance claims, a return period of 200 vears for a $1 billion
loss indicates there is a 0.5% chance of experiencing a loss of at least $1 billion in
any given year.
Occurrence An annual occurrence loss is the largest loss caused by a single simulated event in a
Loss given year.
Aggregate An annual aggregate loss is the sum of the losses caused by all simulated events in
Loss a given single year
Ground Ground-up loss Is the total amount of loss that is covered by an insurance policy
Up Loss Ground-up loss does not include deductibles paid by the insured, nor does it include
liabilities ceded to a reinsurance company.
Gross Loss The amount of a ceding company’s loss irrespective of any reinsurance recoveries
due.
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Output Description
Tail Value at TVaR is a quantification of the shape of your EP distribution beyond a certain
Risk (TVaR) threshold. It is an average of all simulated losses beyond a specified threshold.

This is also a direct output from Touchstone. TVaR can be used to compare the
relative risk between two exposure portfolios. In general, a portfolio with a bigger
TVAR value is riskier. Further, the TVaR value can be used as a basis for portfolio
optimization. Mitigating the TVaR value by eliminating certain contracts or policies
that contribute disproportionally to your total TVaR value can help to lower your
TVaR as well as the AAL for the entire portfolio.
Example: if the losses exceed the 95th percentile threshold, what would be the
expected average loss.

Event For each individual event, our software provides detailed graphical and other key
Footprint information about the event.

Estimates of The EP Curve with Secondary Uncertainty analysis feature in Touchstone allows
Uncertainty users to display additional uncertainty. However, the user should be aware that the
financial module always accounts for secondary uncertainty in loss calculations.
The difference is constructed using the secondary uncertainty around each event,
whereas the Standard EP Curve uses the mean of each event distribution.

Event Loss The Event Loss Summary Detail Table in the Touchstone user interface (or export)
Summary displays more detailed information about each of the events generated by the
Detail Table standard (probabilistic) loss analysis. This information allows users to assess the

impact of large loss scenarios on a portfolio level and to dig into what type of event
can cause that size of losses to a portfolio. By default, the table displays stochastic
events; however, you can also view historical and world scenario event losses by
selecting them in the Events Detail section of the ribbon.

Annual The aggregate EP curve provides loss distribution for the combined potential loss in
Aggregate any given year
EP Curve
Occurrence The occurrence EP curve provides loss distribution for the largest potential loss in
EP Curve any given year

11.4  Supported geographic resolutions

The following geographic resolutions are supported for the Verisk Wildfire Model for the United
States in Touchstone:

County

Zip code

Complete address (street, city, and state)
User-specified latitude and longitude
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11.56 Modeling aggregate data

Touchstone can be run with Disaggregation turned on or off. During analysis in Touchstone if
Disaggregation is selected, the aggregate County, City or Zip codes exposures are automatically
disaggregated to a 1-km grid, based on industry exposure welights, by line of business.

11.6 Construction and occupancy classes, year built and height
bands, and relative vulnerabilities

The vulnerability of a structure depends on its construction and occupancy class combination

as well as its age and height. With the goal of enabling clients to code their exposure data as
specifically as possible, the Verisk Wildfire Model for the United States supports 125 construction
classes (including 20 marine asset classes) and 123 occupancy classes (including 12 marine
storage classes). Of the occupancy classes, 62 are classes for industrial facilities.”

Descriptions of the supported construction and occupancy classes are available in the
Touchstone Exposure Data Validation Reference.

11.7 Secondary risk characteristics

For additional details, see Secondary Risk Characteristics for Wildfire section.

11.8 Damage functions for unknown characteristics

Often a characteristic of a building (e.g., its construction or occupancy class, height, etc.) is
unknown. In these cases, Touchstone uses a composite damage function based on Verisk's
Industry Exposure Database. For a given unknown characteristic, the unknown damage function
represents a weighted average of the damage functions of the different classes that are in

the Verisk Industry Exposure Database, with weights determined by the relative share of total
insurable value of each class. The Verisk Wildfire Model for the United States supports damage
functions for risks with unknown characteristics at the state level.

2 The industrial facilities set of occupancy classes refers to the 400-series, are large, complex facilities comprising many
components.
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11.9 Supported policy conditions

The financial module in Touchstone allows for the application of a wide variety of location, palicy,
and reinsurance conditions. Location terms may be specified to include limits and deductibles
by site or by coverage. Supported policy terms include blanket and excess layers, minimum and
maximum deductibles, and sublimits. Reinsurance terms include facultative certificates and
various types of risk-specific and aggregate treaties with occurrence and aggregate limits.
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131 Vulnerability Function Flowchart

Add the flowchart on vulnerability function development.

Raw Client Data Faw clent data are recelved |
——FAie hese data allowed w0 be used for model development or calibrRIBT ——

Yas

ez
L]

| Convert data into model readable format |

v

( Formatted Client Data [:

v

Fun dient data through modeled view |

Mo |

[ Evaluate goodness of fit and cument model applicability I

Yes

Yas

L]
| Inclugion of data added w scope of uposte |

[ Vuhembility module updates based ondata |-1—

1

[ Evaluate goodness of fit and cument model applicabllity | Recalbrate
No

Yes

U0 data Suggests & change 1o maodey
»{ Ed )

Do data sugpests a change to modd? —

A N——

Figure 50. Process to Include Client Data

V= Verisk:

Required Model Documentation for the PRID-2025-00001

©2025 Verisk Analytics

108


http://www.verisk.com

14 Appendix 3

14.17 Version Control

The Verisk Wildfire Model for the United States is implemented in our software platform,
Touchstone. Verisk generally produces one major release of Touchstone annually (e.g.
Touchstone 2024, Touchstone 2025).

Any revision that results in a change in any California residential wildfire loss cost or probable
maximum loss level results in a new model version number. The Verisk Wildfire Model for the
United States version definitions are predefined and follow typical versioning methodology,
including:

Major Version (two digit)—Incremented when model components, such as the catalog,
hazard, intensity, or vulnerability modules, are updated. A single major version increment is
sufficient in cases when multiple components are updated during a release cycle.

Minor Version (two digit)—Incremented when data files, such as the physical properties or
industry exposures, are updated but the model components remain unchanged. If data files
are changing simultaneously with a major version update, the minor version number does
not need to be incremented.

Build Version (two digits)—Incremented when data file, model component, or loss-impacting
software bugs have been identified after the release of our client software products.

The internal software version definitions are predefined and follow typical software versioning
methodology, including:

V= Verisk:

Major Version (two digit)—Incremented when new or revised models are implemented into
the software application. Also introduces database, engine, and other significant changes to
the software.

Minor Version (two digit)—Incremented when new or revised models, functionality
enhancements, and other various software upgrades are introduced. Most often, this service
pack is released in the fall.

Update to Minor Version (one digit)—Incremented in cases when bug fixes are necessary
and have been identified after the release of our client software. The need to increment this
version number is most often identified externally by a client and incrementing this digit
indicates that a service pack or Hot Fix was released.

Build Version (two digit)—Incremented in cases when bug fixes are necessary and these
changes have been identified prior to a release of our client software.

Build Date (Eight digit—yyyymmdd)—Incremented each time significant changes are made to
the source code and the software is compiled. The build date will change most frequently. A
new build date is introduced every time the version number changes.
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Client Request for Custom Update (alpha character)—An alpha-character suffix designates a
custom version of Verisk software. For example, it is used when a client requests an update
to be compatible with their technical environment.
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151 Form G-8: Wildfire Catastrophe Model Settings and Input

Use the tables below to document the options available to the user of the wildfire
catastrophe model, the standard settings of the wildfire catastrophe model expected to
be used in the ratemaking context, and the expected input to the model. The table should
indicate which features the user must include in the data that is imported, and which are
automatically filled in the model if a user does not import them.

Include annotated examples of a data import log and an analysis log. In the “Import/
Analysis log location”, the column of each table includes a letter reference for where the
relevant user choice is indicated in the logs.

Along with this form, submit a recorded video that serves as guidance for the import and
analysis log. This video should focus only on the options and features that are anticipated in
the context of a rate filing. This video should demonstrate what error flags are possible and
how to interpret summary statistics from the data import. For example, how many exposure
included mitigation features details, geospatial granularity of imported data, and level of
geocoding.

Form G-8.A

An example Import Log, along with annotated images supporting the data presented, is provided
below:

**  Touchstone 2024  *x

hhkkkkhkhkhrhhkhhhkhhhrkhkrkhkhhhrhrxhrxk

ok ok ok ok ok kKK Log header xxx#xxxxxx
Description:  [Import] initiated by [AIR-WORLDWIDE\I44919] on [CCSG22TS4HNT1]
Time Submitted: [2025-07-09 10:58:54,337]
Time Started: [2025-07-09 10:58:54,383]
Time Ended:  [2025-07-09 11:00:13,591]
Duration:  [00:01:12]

Status: [Completed]

Owner, [AIR-WORLDWIDE\I144919]
Platform Name/

Identification: [Touchstone 2024]
Datalmport Version: [12.2.0.1]

wrxxoeeesx | 0g Data Source Information s

Import Type: [CSV]

Import Date Format: [Default]

%)ata Source: \\CCSG22TSAHNT\AIRWork\IMPORT\1153.Form G-8 geocode
Input.csv
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Data Tables: [1153.Form G-8 geocode input.csv

1153 Map_b3a8ce22-91f2-4d04-9512-1e2beadchdef 1153 .Default_39517b83-9302-4954-
b87e-a3723c1¢cf331 1153 Form G-8 geocode input.2025-07-09T105853.csv |

V= Verisk:
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Delimiter. [}
Text Qualifier; [Double Quote]
Has Header: [Y]

ok ok ok ok ok ok ok ek Log |mpor‘[ Op’[ions dokkk kA A K

Destination Database [GP_Geocode_Test_EXP]
Destination SQL Server [CCSG22TS4DBI\PRIMARYSQL]
Target Type - [Exposure Set]

Target Name [GP_Geocode_Test]

Contract Type  [Primary]

Mapping Set : [GP_Geocode_Test]

Continue Geocode with Import Errors: [Y]

Duplicate Contract  [Skip+Error]

Location Error - [Reject Location]

Fail After - [Unlimited]

Max Errors - [0]

Existing Geocode - [Preserve user-supplied and premium geocodes]
Geocoder [AIR Geocode]

User-supplied Geocode Match Level Mapping Set ; [None]
Include Decommissioned Offshore Platforms : [NoJ

Min HPC Cores 1]

Max HPC Cores - [4]

Job Priority :[Normal]

Job Scheduled Time ' [Execute Immediately]

Premium Geocoding Batch Size: [40000]
Premium Geocoding Internal Batch Size: [4000]
Currency :[USD]

Auto Exposure View: Yes

Project Name: [CDI_PRID_Touchstone_Demo}
Exposure View Name: [GP_Geocode_Test]
Generate Exposure Summary: [Yes]

----> Executing Advance Geocoding Plan
-—-—> Executing Advance Geocoding Plan
----> Executing Advance Geocoding Plan
-—-—> Executing Advance Geocoding Plan
----> Executing Advance Geocoding Plan
-—-—> Executing Advance Geocoding Plan

ek ko kK kK& Log Summary StatiStics *x*#*xxxk*
Elapsed Time: [00.00:01:09]
Total No. of records; [1024]
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No. of records successfully processed: [1024]
Percentage of records successfully Imported: [100.00%]

Kk kK kK kKKK Log Detailed Statistics *xx##xx**
Summary of Property Records Imported: |
No. of Contracts [512]]

No. of Locations 512

No. of Location Details 512

No. of Sublimits 0]l

No. of Layers 0]

No. of Treaty “|[Q])

No. of Facultative [0l

No. of Step Functions |[0]]

No. of Location Groups |[0]]

Summary of Property Records  NOT IMPORTED: |

No. of Contracts NOT IMPORTED: |[0]]
No. of Locations NOT IMPORTED: |[0]]
No. of Location Details NOT IMPORTED: |[0]]
No. of Sublimits NOT IMPORTED: |[0]]
No. of Layers NOT IMPORTED: |[0]]

No. of Reinsurance Treaty ~ NOT IMPORTED: |[Q]]
No. of Reinsurance Facultative NOT IMPORTED: |[0]]
No. of Reinsurance (Unknown) NOT IMPORTED: |[0]|
No. of Step Functions NOT IMPORTED: |[0]]

No. of Location Groups NOT IMPORTED: |[0]|

Summary of Property Exposure Data o

Total of Replacement Value A Imported -[307,200,000.00]]
Total of Replacement Value A Not Imported  :|[0.00]|

Total of Replacement Value B Imported -1[30,720,000.00]|
Total of Replacement Value B Not Imported  : |[0.00]|

Total of Replacement Value C Imported :[230,400,000.00]|
Total of Replacement Value C Not Imported  : |[0.00]|

Total of Replacement Value D Imported :|[67,440,000.00]|
Total of Replacement Value D Not Imported  :|[0.00]]

Total of Replacement Value Imported -|[629,760,000.00]]
Total of Replacement Value Not Imported -|[0.00]|

Total Number of Risks Imported [512]]

Geocode Statistics |
GeoCoding Elapsed Time: [00.00:00:34]

384] locations records required geocoding

128] locations records user retained geocodes

0] locations records geocoded using premium geocoding

264] locations records were successfully geocoded using default geocoding
120] location records were not geocoded

Summary of Geocode Match Level ||

0] address(es) are matched at the Point level

48] address(es) are matched at the Exact Address level
0] address(es) are matched at the ZIP9 Centroid level
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2] address
6 address
4] address
24 address

es) are matched at the Relaxed Address level
es) are matched at the Postal Code Centroid level
es) are matched at the City Centroid level
es) are matched at the County Centroid level
0] address(es) are matched at the Cresta Centroid level
0] address(es) are matched at the Subarea 2 level
% addressges) are matched at the Area Centroid level
(

l_O —~l
e RN}
T

address(es) are matched at the Country level
0] address(es) are matched at the Disaggregated level
128] address(es) are matched at the User Supplied level
0] address(es) are matched at the Wind Turbine CRESTA level
120] address(es) are not matched
0] address(es) were not geocoded due to errors

Summary of Premium Geocoding Geocode Levels ||

Summary of User Provided Geocode Match Level |
[512] Address(es) have no provided match level

Summary of user provided Verisk BINS ||

*kxAxxAERE ErrOr Summary ok ok o ok o ek ok
skwwkkkk BUSINESS FITOrS *xxaksskhk

*kkkkkkkkk Da‘ta Eﬂ”ors *kkkkkkkkkhx

ok ok ok ok ok ok o ko \/\/armngg ok ok ok ok ok ok ok ko

o Touchstone 2024 o
Log header
Description: [Import] initiated by [AIR-WORLDWIDE\I44919] on [CCSG22TS4HN1]

Time Submitted:
Time Started:
Time Ended:
Duration:
status:

Owner:
Platform Name/
Identification:

[2025-07-09 10:58:54,337]
[2025-07-09 10:58:54,383]
[2025-07-09 11:00:13,581]
[00:01:12]

[Completed]
[AIR-WORLDWIDE\I44919]

[Touchstone 2024]

DataImport Version: [12.2.0.1]

*xxonnne* Log Data Source Information **kkkxxxx

Import Type: [CSV]

Import Date Format: [Default]

Data Source: [\\CCSG22TS4EN1\ATRWork\IMPORT\1153.Form G-8 geocode input.csv]
Data Tables: [1153.Form G-8 geocode input.csv 1153.Map_53a8ce22-91£2-4d04-9512-le2beadcSdef 1153.Default_39517b83-9302-4954-b87e-a3723c1c£331 1153.Form G-8 geocode
input.2025-07-09T105853.csv ]

Delimiter: [,]
Text Qualifier:
Has Header: [Y]

[Double Quote]

*HXHHHHHHK Log IMPOTE OPLions ***xxxxxsx

Destination Database
Destination SQL Server

Target Type
Target Name
Contract Type
Mapping Set

Continue Geocode with Import Errors: [Y]
Duplicate Contract

Location Error

Toi1 Afver § ey gpeen - Do not geocode locations with provided
Mizssgggr(sseocode igieserve user-supplied and premium geocodes]| LatltUde/LongltUde Values

: [GP_Geocode_Test_EXP]

: [CCSG22TS4DB1\PRIMARYSQL]
: [Exposure Set]

: [GP_Geocode_Test]

: [Primary]

: [GP_Geocode_Test]

Appendix 4

: [Skip+Error]

eocoder

User-supplied Geocode Match Level Mapping Set : [None]
Include Decommissioned Offshore Platforms : [No]
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: [AIR Geocode]

locations

Touchstone's default behaviors are:

- Use the built-in geocoding system for all other
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Min HEC Cores T (1]

Max HEC Cores ¢ [4]

Job Briority : [Normal]

Job Scheduled Time ¢ [Execute Immediately]
Premium Geocoding Batch Size: [40000]
Premium Geocoding Internal Batch Size: [4000]
currency : [USD)

Auto Exposure View: Yes

Project Name: [CDI_PRID_Touchstone_Demc]
Exposure View Name: [GP_Geocode_Test]
Generate Exposure Summary: [Yes)

----> Executing Advance Geocoding Plan
----> Executing Advance Geoceding Plan
----> Executing Advance Geoceding Plan
----> Executing Advance Geocoding Plan
----> Executing Advance Geocoding Plan
----> Executing Advance Geocoding Plan

skaxrERRE% Log SUNMAIY STAtistics *exsidxs
Elapsed Time: (00.00:01:09)
Total No. of records: [1024]
No. of records successfully processed: [1024]

of records

full

Imported: (100.00%]

*¥*xxxxxx%x Log Detailed Statistics *xdkxdxxk

Summary of Property Records Imported:

No. of Contracts : | [512] ]
No. of Locations 1[512] |
No. of Location Details

No. of Sublimits

No. of Layers

No. of Treaty

No. of Facultative
No. of Step Functions

No. of Location Groups

@ | [512]]

HERI N

HERON
11011

© 1071
11011

RO

No. of Contracts
No. of Locations

No. of Sublimits
No. of Layers

No. of Step Functions

INo. of Location Details

No. of Reinsurance Treaty
INo. of Reinsurance Facultative NOT IMPORTED:
No. of Reinsurance (Unknown)

INo. of Location Groups

ISummary of Property Records

NOT IMPORTED:
NOT IMPORTED:
NOT IMPORTED:
NOT IMPORTED:
NOT IMPORTED:
NOT IMPORTED:
NOT IMPORTED:

NOT IMPORTED:
NOT IMPORTED:
NOT IMPORTED:

This section counts the number of errors
encountered during the import process.

Geocode Statistics :|

GeoCoding Elapsed Time:

V= Verisk'

©2025 Verisk Analytics

Summary of Property Exposure

Data

E
Total of Replacement Value A Imported : |[307,200,000.00]|
Total of Replacement Value A Not Imported : 1[0.00]1]
Total of Replacement Value B Imported : |[30,720,000.00] | - A
Total of Replacement Value B Not Imported : 1[0.00]1] Thls seCtlon Sums the tOtaI
Total of Replacement Value C Imported : | [230,400,000.00]| H
Total of Replacement Value C Not Imported : 1[0.00]] Insured Value Of a" SL_IcceSSfUI
Total of Replacement Value D Imported : | [61,440,000.00] | and all unsuccessful |mports
Total of Replacement Value D Not Imported : | [0.00]] °
Total of Replacement Value Imported : | [629,760,000.00]|
ITotal of Replacement Value Not Imported : | [0.00]]
fotal Number of Risks Imported i 10251211

[00.00:00:34]
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[384] locations records required geocoding

[128] locations records user retained geocodes

[0] locations records geocoded using premium geocoding

[264] locations records were successfully geocoded using default geocoding
[120] location records were not geocoded

E‘mmnary of Geocode Match Level :|
[0] address(es) are matched at the Point level
[48] address(es) are matched at the Exact Address level

[0] address(es) are matched at the ZIPY9 Centroid level H

[72] address(es) are matched at the Relaxed Address level MatCh IeVel IS @ measure Of hOW

[96] address(es) are matched at the Postal Code Centroid level i

[24] address(es) are matched at the City Centroid level preCIsely the geOCOder reported the
[24] address(es) are matched at the County Centroid level Latltude/Longltude for a Iocatlon

[0] address(es) are matched at the Cresta Centroid level
[0] address(es) are matched at the Subarea 2 level
[0] address(es) are matched at the Area Centroid level

[0] address(es) are matched at the Country level Match IeVeI meanlngs are deflned |n
[0] address(es) are matched at the Disaggregated level g
[128] address(es) are matched at the User Supplied level the accompanymg document

[0] address(es) are matched at the Wind Turbine CRESTA level
[120] address(es) are not matched
[0] address(es) were not geocoded due to errors

Summary of Premium Geocoding Geocode Levels :|

Summary of User Provided Geocode Match Level :|
[512] Address(es) have no provided match level

Summary of user provided Verisk BINS :|

*HKHKKKAKKX EFFOr SUMMAry *¥¥*sxikix
FHXXXKXK BUSIiness Errors *xxxkxxkx
FHXKKKXKNHK Data BErrors *¥xxkxxxxkx

FHHHHFHHHHHK [ATNINGS FHH R EH R AR

Figure 51. Annotated Import Log

Note: \When users import data to Touchstone:
1. The order of the rows in the import source does not affect the analysis results.

2. Adding or removing policies from the import data does not affect the results for the
unchanged policies.

Table 11. Touchstone Geocode Match Levels for Non-Street-Level Address Data

Resolution Geocode Geocode Enhanced Description
Level Matching Match Geocode
Level on Level Code Match
the Ul Level
Code
Highest Postal Code POST POST Touchstone geocodes the exposure at the
resolution Centroid centroid for the corresponding postal area.
City Centroid CITY CITY Touchstone geocodes the exposure at the
ﬂ centroid for the corresponding city.
CRESTA CRES CRES Touchstone geocodes the exposure at the
ﬂ Centroid centroid for the corresponding CRESTA area.
County CNTY SUBA Touchstone geocodes the exposure at the
ﬂ Centroid centroid for the corresponding county.
Country COUN COUN Touchstone geocodes the exposure at the
ﬂ centroid for the country.
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Resolution Geocode Geocode Enhanced Description
Level Matching Match Geocode
Level on Level Code Match
the Ul Level
Code
Lowest None NONE NONE Touchstone cannot determine the geocode.
Resolution

Table 12. Touchstone Geocode Match Levels for Street-Level Address Data

Resolution
Level

Highest
resolution

Geocode

Matching

Level on
the UI

Point

Geocode
Match
Level
Code

PT

Enhanced
Geocode
Match
Level
Code

PT

Description

The highest resolution geocoding available because it

Is obtained from GPS or satellite images directly on the
building. Since this data is obtained as part of the on-site
commercial building inspection process, point matches
are available only in some commercial building records
via augmentation.

Parcel

PRCL

PRCL

Touchstone places the geocode at the centroid for the

land parcel of a given property. This level is the second

highest available geocoding resolution. No interpolation
Is required because each parcel centroid in this parcel-

level dataset has a specific address for matching. This

level of resolution is only available in some commercial
building records via augmentation.

Address

(Exact)

ADDR

SEGI

Street Segment Imputed: Touchstone finds the

address in a street segment that has a geocode for the
endpoints. All key street components match to expected
values and acceptable city/state or zip code values.
Touchstone calculates (interpolates) the relative location
of the address between the segment endpoints.

Relaxed

RLXA

SEGI

Street Segment Imputed: Touchstone imputes a
geocode from a matched street segment. However, if
the street number is out of range or if some of the key
street components, such as street name, directional(s),
or street type, are changed during the street validation
match, then the highest possible Geo. Match Level Code
Is a "Relaxed" match.
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Resolution Geocode Geocode Enhanced Description
Level Matching Match Geocode
Level on Level Match
the UI Code Level
Code
ﬂ Address ADDR BLCK The streetseqnumstart and streetsegnumend of the
7ip9 street segment are the same (Zip9 Single Address).
(Exach) (Zip g (Zip9 Sing )
Centroid)
Address ADDR BLCK The address is found in a street segment, but the street
ﬂ (Exac) (Zip9 segment has no geocodes available. However, a Zip9
Centroid) Centroid is available.
Relaxed RLXA BLCK Only a Zip9 is included, or the Zip9 cannot be validated.
ﬂ (Zip9
Centroid)
Relaxed RLXA STRI Street Imputed: The address is not found in a street
ﬂ segment, but the address is between the start and end
range for the matched street. Touchstone calculates
(interpolates) the location of the address between the
street endpoints.
Relaxed RLXA STRC Street Centroid: The street number is not available on
ﬂ the input address, but the street is short enough to have
a useful centroid. The house number could be missing
from or incorrect in the input address.
Postal POST POST The street address is not found, and street centroid is
ﬂ Code not available, or the street is too long to have a useful
Centroid centroid. Touchstone returns a population-weighted zip
code centroid if one is available.
City CITY CITY The street address is not found, and street centroid is
ﬂ Centroid not available, or the street is too long to have a useful
centroid. In addition, Touchstone does not have Zipb
data for this location. That is, no postal centroid is
available. Touchstone returns a city centroid.
County CNTY SUBA Touchstone places the geocode at the center of the
ﬂ Centroid county (from the Area Code database). In this case, no
postal or city centroid information is available
Country COUN COUN Touchstone places the geocode at the center of the
ﬂ country.
Lowest None NONE NONE Touchstone cannot determine the geocode.
Resolution

V= Verisk:
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Table 13. Touchstone Geocode Match Levels for User Supplied Geocodes

Geocode | Geocode | Enhanced Description
Matching Match Geocode
Level on Level Match

the UI Code Level

Code

User USER USER The user has provided the geocode. The accuracy of

Supplied this type of geocode depends upon the precision of
the user supplied data.
None NONE NONE Touchstone cannot determine the geocode

An example of an analysis log, along with annotated images supporting the data presented in
Tables G-8.A, G-8.B, and G-8.C, Is provided below.

kkkkhkhkhkkhhkhkhkhrkkhrxkhhkkhhx

*+ Touchstone 2025 **

KAKKAKKKKKKKAAKKAKAKAAKAKAKK

0 Analysis Header Info

Analysis Type: Detailed Loss Analysis
Express Analysis: No
Analysis Name:

Form_ATA3_Miti_Residential_Notional_10K_Smoke_andWF

V= Verisk:

)

©2025 Verisk Analytics

Template Name; AIR Default Loss Template

Analysis SID: 32

Result SID: 2

Activity ID: 31

HPC Job ID: 130

Description: N/A

User. AIR-WORLDWIDE\I36730

Time Submitted: 06/12/2025 12:39:10
Time Started: 06/12/2025 12:39:10
Time Ended: 06/12/2025 12:56:53
Duration: 00:17:35

Status: Completed

o Error/Warning Summary

o Fatal Error
None
o lgnorable Errors

None
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0 Exposures Modelled
Total

100% Replacement Value
100% Locations

o System Info

System Version: 13.0.0.1773

Platform Name/

|dentification: Touchstone 2025

SQL Server Name: CCSG22TSEDBT\PRIMARYSQL
HPC Head Node: CCSG22TS6HNT

o Analysis Target Info

Analysis Target Type: Portfolio

Analysis Target Name: Form_ATA3_Miti_Residential_Notional
Exposure View Filter: Not Applied

Exposure Set(s): Database : Exposure Set Name

CK_Test_EXP : Form_ATA3_Miti_Residential_Notional

Analysis Statistics: Analyzed

Policy Count: 5094

Total Location Count: 508420

Property Location Count: 508420

Workers Location Count: 0

Disaggregated Location Count: O

Layers Count: 0

SubLimits Count: 0

Reinsurance Count: 0

Total Replacement Value:  625,356,600,000

o Event Set Options

Event Set Name: 10K US AP (2025) - Standard
Event Set Type: Stochastic

Event Filter: Off

Year Filter. Off

Location Filter: Off

Rule Filter: Off

Demand Surge: On

Custom Demand Surge(US-derived):  No

Custom Demand Surge(Country-specific):  No

Country-specific Demand Surge Options:  Construction Cost Inflation Percentage-
N/A

Countries/ Regions Supporting Country-specific Demand Surge- N/A

Exposure Exclusions for the Country-specific Demand Surge-  N/A

Perils: Other Perils -  Smoke
Other Perils - Wildfire
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Hazard Models: Model:  Model Version: Catalog:
Catalog Version: Events:  Scenarios:
Verisk Wildfire Model for the U.S. 5 4.0.1 Verisk Wildfire Model
for the U.S. 056.00.1209 7173209 10000

V= Verisk:
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o Financial Model Options

Disaggregation: Off
Average Properties: Off
Invalid Con/QOcc Pairs: Ignore

o Reinsurance Options

Program Name: N/A
Order of application of Fac: Do not apply
FAC Reinsurance Count: 0

Treaty Reinsurance Count: 0

o Custom Model Options

Custom Model: N/A

o Output Options

Loss Perspectives: Ground Up
Gross

Event Losses By. Portfolio
Geography. Event Total
Summary (AAL Only): Location Summary
Sub Peril: Off

Save By Treaty: Off

Save By Facultative: Off

Loss Detalls: Coverage
Auto Export CLE No

Save By Zone: False

Zone By Peril: False

Retain Annual EP By Zone: False

0 Analysis Management Options

Scheduled On: Execute Immediately
Requested Resource Type: core

Requested Min-Max Resources:  32-32

Priority: Normal

Processing Resource: On Premises

Result Server. CCSG22TS6DBT\PRIMARYSQL
Result Database: CK_Test_RES

Results Currency Set: AIR Default

Results Currency: Ush

Move Marine Craft Geocodes:  Off
Commodity Prices
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Gas: 0
Qil: 0

o Flexibility Options

No loss mod template was selected
No loss custom vulnerability template was selected

No loss custom frequency template was selected

Include Standard AIR Detailed Loss Analysis Result: Yes
o Terrorism Options

Terrorism Not Covered - Coverage solely provided by Standard Fire Policies (SFP)

o Physical Properties Info

Physical Properties computation completed at 06/12/2025 12:41:47
Time taken for Physical Properties computation: 00:01:02

Time taken for Post Processing of Physical Properties: 00:00:01
Total time taken for Physical Properties processing: 00:01:04
Physical properties were computed for all locations

© Analysis Header Info

Analysis Type: Detailed Loss Analysis
Express Analysis: No

Analysis Name: Form_A1A3_Miti_Residential_Notional_10K_Smoke_andHF
Template Name: AIR Default Loss Template

Analysis SID: 32

Result SID: 2

Activity ID: 31

HPC Job ID: 130

Description: /A

User: AIR-WORLDWIDE\ 36730

Time Submitted: 86/12/2025 12:39:18

Time Started: 06/12/2025 12:39:10

Time Ended: 06/12/2025 12:56:53

Duration: 00:17:35

Status: Completed

© Error/Warning Summary

© Fatal Error
None
o Ignorable Errors

None

© Exposures Modelled
Total

100% Replacement Value
10@% Locations

© System Info

System Version: 13.0.0.1773
Platform Name/
Tdentification: Touchstene 2025
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Identification:
SQL Server Name:
HPC Head Node:

o Analysis Target Info

Analysis Target Type:
Analysis Target Name:
Exposure View Filter:

Exposure Set(s):

Analysis Statistics:

Policy Count:

Total Location Count:
Property Location Count:
Workers Location Count:

Disaggregated Location Count:

Layers Count:

SublLimits Count:

Reinsurance Count:

Total Replacement Value:

o Event Set Options

[Event Set Name:

Touchstone 2025
(CSG22TS60B1\PRIMARYSQL
CCSG22TS6HNL

Portfolio
Form_A1A3_Miti_Residential_Notional
Not Applied

Database : Exposure Set Name

25,356, 600,000

tochastic

1_Residential_Notional

vent Set Type
lEvent Filter:

Year Filter:
Location Filter:
Rule Filter:

Demand Surge:
Custom Demand Surge(US-derived):

ToR US AP (7025) ~ Standard ) tem A
OF ) Item B

Off
@ ErTTE—
No

Appendix 4

Custom Demand Surge(Country-specific): No
Country-specific Demand Surge Options: @ Cost Inflation g N/A
Countries/ Regions Supporting Country-specific Demand Surge- N/A
Exposure Exclusions for the Country-specific Demand Surge-  N/A
[Perils: Other Perils - e ]
Other Perils - Wildfire
lazard Models: Model:  Model Version: Catalog: Catalog Version: Events: Scenarios:
05.00.1209 7173209 10000

(Verisk Wildfire Model for the U.S. 5 4.0.1

Verisk Wildfire Model for the U.S.

o Financial Model Options

Disaggregation: Off
Average Properties: Off
o Reinsurance Options
Program Name: /A
Order of application of Fac: Do not apply
FAC Reinsurance Count: ]
o

Treaty Reinsurance Count:

o Custom Model Options

l Custom Model:

T ) (T

o Output Options

[ Toss Perspectives:

Ground Up

) rTye—

( Sub Peril:

Off

Save By Treaty:
Save By Facultative:

Loss Details:

Auto Export CLF:

Off
Off

Coverage

Zone By Peril:

[ Save By Zone:
Retain Annual EP By Zone:

o

False

False -m_
False

o Analysis Management Options

Scheduled On:

Requested Resource Type:
Requested Min-Max Resources:
Priority:

Processing Resource:

Result Server:
Result Database:

Results Currency Set:
Results Currency:

Move Marine Craft Geocodes:

V= Verisk'
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Execute Immediately

32-32
Normal

On Premises
CCSG22TS6DB1\PRIMARYSQL
CK_Test_RES

AIR Default

usD

oFf

Required Model Documentation for the PRID-2025-00001

123


http://www.verisk.com

Appendix 4

© Analysis Management Options

Scheduled On: Execute Inmediately
Requested Resource Type: core
Requested Min-Max Resources: 32-32
Priority: Normal
Processing Resource: On Premises
Result Server: CCSG22TS6DB1\PRIMARYSQL
Result Database: CK_Test_RES
Results Currency Set: AIR Default
Results Currency:
Move Marine Craft Geocodes: off
Commodity Prices
Gas: [

0il: ]

o Flexibility Options w’
(o 10ss mod template was selected )
No loss custom vulnerability template was selected
([ oo o e g o T ) _mg_

Include Standard AIR Detailed Loss Analysis Result: Yes

o Terrorism Options

Terrorism Not Covered - Coverage solely provided by Standard Fire Policies (SFP)

o Physical Properties Info

Physical Properties computation completed at 06/12/2025 12:41:47
Time taken for Physical Properties computation: 00:01:02
Time taken for Post Processing of Physical Properties: 80:00:01
Total time taken for Physical Properties processing: 00:01:04
Physical properties were computed for all locations

Figure 52. Annotated Analysis Log

Table 14. Form G-8.A, Hazard

Hazard
Option Notes Analysis Log
Location

Event Set There are three event sets in Touchstone which contain the Wildfire ltem A

Model:

«  TOKUS AP (2025) - Standard

+ BOKUS AP (2025) - Standard

+ 100K US AP (2025) - Standard

+ Older versions have the same names but different years in the

parentheses.

Event Set Default: None. This option allows the user to select only certain events. ltem B
Filter
Perils For Wildfire, only "Wildfire" and "Smoke" are relevant options. ltem D
Region United States ltem E
Model AIR Default is the only model supplied by Verisk to clients. ltem J
Custom Default: None. Only available to clients who license Model Builder. ltem R
Frequency
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Table 15. Form G-8B.1, Vulnerability

risks to various
perils. Touchstone
provides a set

of construction
class codes that
describe the
building material
and/or type of
construction used
in risks.

known occupancy but unknown construction
and height, Touchstone uses a damage
function that is a weighted average of the
damage functions for the same occupancy
class corresponding to all combinations of
construction and height classes statewide

Vulnerability
Option Notes Analysis
Log
Location
Disaggregation | Default: On. When turned on, the Disaggregation Financial Settings parameter ltem F
distributes aggregate (coarse resolution) location data down to a finer
resolution to locations where exposures are likely to be located based on lines
of business represented in Verisk's Industry Exposure Database. This process
enables the loss engine to apply policy terms appropriately across an entire
(distributed) region, rather than applying them only across the centroid of the
region; this generates more accurate loss results for risk locations with poor
quality data because it avoids analysis of aggregate exposures at a single-
point location.

Average Default; Off. This is a feature for other models in the platform and does not ltem G

Properties affect loss outcomes event if "On."

Custom Default: None. Only available to clients who license Model Builder ltem Q

Vulnerability

Table 16. Form G-8B.2, Primary Characteristics
Primary Characteristics
Characteristic Option User Unknown Calculation Input
Input Method
Required?

Construction|  Construction Yes When the construction and occupancy User input
class codes help codes for a location are both "Unknown”, through
to determine the Touchstone assigns the occupancy code exposure
vulnerability of your "General Commercial." For an exposure of data
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Primary Characteristics
Characteristic Option User Unknown Calculation Input
Input Method
Required?

Occupancy The primary Yes User input
Residential through
occupancy codes exposure
define the type data
of activity carried
out in the risks
included in a
record.

Storles Integer between 0 Yes Treated as weighted mixture of locations with User input
and 999, inclusive. similar construction & occupancy. through

exposure
data

Year Built Integer between 0 Yes When the year built of the structure is not User input
and Current Year, known, Touchstone calculates an unknown through
inclusive. year built damage function by applying a exposure

statewide building stock data-weighted data
distribution to the corresponding damage
functions for each year built.
Table 17. Form G-8B.3, Secondary Characteristics
Secondary Characteristics and Mitigation Features
Characteristic Default/Unknown Input Method Options
Calculation

Defensible space Treated as zero feet. User input through Location surrounding detall fields

exposure data

Firewise USA™ Treated as "No". User input through Location surrounding detail fields

community exposure data

Glass type Treated as "Tempered”. User input through Location wall detall fields

exposure data

Roof attached Treated as "No User input through L ocation connection detall fields

structure Attached Structure” exposure data

Roof covering Treated as "Asphalt User input through Location roof detall fields

shingles” for wooden exposure data
and masonry
residential buildings.
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Secondary Characteristics and Mitigation Features

Characteristic

Default/Unknown
Calculation

Input Method

Options

Fire rating for roof

Treated as "Class B’

User input through

Location roof detall fields

covering for applicable Roof exposure data
Coverings.
Wall siding Treated as "Aluminum/ User input through L ocation wall detail fields

vinyl siding" for
wooden residential
buildings.

exposure data

Fire rating for wall
siding

Treated as "Class B" for
applicable siding types.

User input through
exposure data

Location wall detail fields

Building shape

Treated as "Rectangle”.

User input through
exposure data

Location building detail fields

Roof geometry

Treated as "Gable
end without bracing”
for any wooden
construction and
masonry residential
buildings.

User input through
exposure data

Location roof detall fields

Skylight Treated as a weighted User input through Location roof detail fields
mixture of "No exposure data
Skylights" and
"Operable” damage
functions.
Soffits Treated as "Aluminum/ User input through Location roof detail fields

Vinyl - continuous
vents'

exposure data

Roof overhang

Treated as "Overhang/
Rake <8 in."

User input through
exposure data

Location roof detall fields

Roof vents

Treated as "Roof Vents
(Turbines, Goose Neck,
Ridge Vents, etc.)"

User input through
exposure data

Location roof detall fields

Roof vent size

Treated as weighted
mixture of "Ve in. or
Smaller Mesh' or
"Wildfire Resistant and
Va-in." or "No Mesh’

User input through
exposure data

Location roof detall fields
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Secondary Characteristics and Mitigation Features

Characteristic Default/Unknown Input Method Options
Calculation
Deck Treated as "No Deck’ User input through Location connection detall fields

exposure data

Gutter Treated as "Gutter User input through Location connection detall fields
with guard/cover" for exposure data
all constructions and
occupancies

Fences within 5 Treated as weighted User input through L ocation connection detail fields
feet mixture of "No fences’, exposure data

"Non combustible" and

"Combustible”.
Exterior fuel Treated as weighted User input through Location surrounding detall fields
storage mixture of "No Exterior exposure data

Fuel Storage" and

"Exterior Fuel Storage'

Form G-8.C

Table 18. Form G-8C, Financial

Financial
Option Notes Analysis
Log
Location
Deductible Default: Zero. Deductibles are part of the Location file imported by the N/A
user. Details of the ways these may be coded are available at Terms
(location terms)
Demand Default: With. The demand surge analysis option inflates loss results ltem C

Surge to reflect the increased cost of labor and materials following a major
catastrophe. As the industry loss rises, so will the cost to repair and
replace properties damaged in the event; the greater the industry loss for
an event, the greater the Demand Surge factor used in the calculations.
Touchstone comes with a standard demand surge curve for the U.S.

which is automatically applied
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Financial
Option Notes Analysis
Log
Location
For Invalid Default: Ignore. A location that has an invalid construction/occupancy ltem H
Con/Qcc Pairs combination (e.g. manufactured home construction with an occupancy
of automotive manufacturing) will be included or excluded in a loss
analysis depending on the user's selection. If the Ignore option is chosen,
the location will not be analyzed. If the Use System Default option is
chosen, the software will convert the invalid codes into an unknown
construction and general commercial occupancy.
Reinsurance Default: None [tem |
Loss Options (On/Off): Ground Up, Pre-Layer Loss, Net of Pre-CAT, Retained, ltem Kx
Perspectives Gross, Post-CAT Net
Save Loss By Options (Select One): Portfolio, Contract, Layer, Line of Business, ltem L*
Location, Geography, User Defined Field This setting determines the level
of granularity at which information about loss costs is saved.
Summary Options (On/Off): Contract Summary, Location Summary [tem M=
(AAL Only)
Additional Options (On/Off): Coverage, Sub-Peril, # Claims, Injury Type, MAOL, EP [tem N=*
Details by Peril, EP by Model
Zone Output Options (On/Off): Zone ltem Ox
Loss Default: None. Users can apply different loss modification factors directly ltem P
Modification to ground-up losses in order to perform sensitivity analyses on their
Factor potential portfolio losses.

* This option determines output granularity and does not impact loss estimates.
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About Verisk

Verisk Analytics (Verisk) provides risk modeling solutions that make individuals, businesses, and
society more resilient to extreme events. In 1987, a Verisk subsidiary founded the catastrophe
modeling industry and today models the risk from natural catastrophes, terrorism, pandemics,
casualty catastrophes, and cyber incidents. Insurance, reinsurance, financial, corporate, and
government clients rely on Verisk's advanced science, software, and consulting services for
catastrophe risk management, insurance-linked securities, longevity modeling, site-specific
engineering analyses, and agricultural risk management. Verisk (Nasdaq:VRSK) is headquartered
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